Semenov Alexander, Dubernet Marie-Lise, Babikov Dmitri
Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, ENS, UCP, CNRS, UMR8112, LERMA, 5 Place Janssen, 92195 Meudon, France.
J Chem Phys. 2014 Sep 21;141(11):114304. doi: 10.1063/1.4895607.
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm(-1) the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm(-1) the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n(2), where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n(3). Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
最近发展的用于非弹性分子 - 原子散射的混合量子/经典理论(MQCT)[A. 谢苗诺夫和D. 巴比科夫,《化学物理杂志》139, 174108 (2013)] 被扩展到处理体固定参考系中不对称陀螺转子分子的一般情况。这补充了在空间固定参考系中制定的类似理论 [M. 伊万诺夫、M.-L. 迪贝内和D. 巴比科夫,《化学物理杂志》140, 134301 (2014)]。在此,目标是开发一种近似的、计算成本可承受的转动非弹性散射处理方法,并将其应用于H₂O + He。我们发现,在较低散射能量下,MQCT的精度略低。例如,在E = 1000 cm⁻¹ 以下,非弹性散射截面值的典型误差约为10%。然而,在较高散射能量下,MQCT方法似乎相当准确。因此,在散射能量高于2000 cm⁻¹ 时,误差始终在1% - 2% 的范围内,这基本上是我们关于轨迹数量的收敛标准。在这些条件下,我们的MQCT方法在计算上仍然是可承受的。我们发现,全耦合MQCT计算的计算成本按n² 缩放,其中n是通道数。这比按n³ 缩放的全量子非弹性散射计算更有利。我们的结论是,对于复杂系统(具有许多内部状态的重碰撞伙伴)和在较高散射能量下,MQCT可能具有显著的计算优势。