Suppr超能文献

研究设计对单试次多变量模式分析中模式估计的影响。

The impact of study design on pattern estimation for single-trial multivariate pattern analysis.

作者信息

Mumford Jeanette A, Davis Tyler, Poldrack Russell A

机构信息

Waisman Laboratory for Brain Imaging and Behavior, WI, USA; Center for Investigating Healthy Minds at the Waisman Center, University of Wisconsin, Madison, WI, USA.

Department of Psychology, Texas Tech University, Lubbock, TX, USA.

出版信息

Neuroimage. 2014 Dec;103:130-138. doi: 10.1016/j.neuroimage.2014.09.026. Epub 2014 Sep 19.

Abstract

A prerequisite for a pattern analysis using functional magnetic resonance imaging (fMRI) data is estimating the patterns from time series data, which then are input into the pattern analysis. Here we focus on how the combination of study design (order and spacing of trials) with pattern estimator impacts the Type I error rate of the subsequent pattern analysis. When Type I errors are inflated, the results are no longer valid, so this work serves as a guide for designing and analyzing MVPA studies with controlled false positive rates. The MVPA strategies examined are pattern classification and similarity, utilizing single trial activation patterns from the same functional run. Primarily focusing on the Least Squares Single and Least Square All pattern estimators, we show that collinearities in the models, along with temporal autocorrelation, can cause false positive correlations between activation pattern estimates that adversely impact the false positive rates of pattern similarity and classification analyses. It may seem intuitive that increasing the interstimulus interval (ISI) would alleviate this issue, but remaining weak correlations between activation patterns persist and have a strong influence in pattern similarity analyses. Pattern similarity analyses using only activation patterns estimated from the same functional run of data are susceptible to inflated false positives unless trials are randomly ordered, with a different randomization for each subject. In other cases, where there is any structure to trial order, valid pattern similarity analysis results can only be obtained if similarity computations are restricted to pairs of activation patterns from independent runs. Likewise, for pattern classification, false positives are minimized when the testing and training sets in cross validation do not contain patterns estimated from the same run.

摘要

使用功能磁共振成像(fMRI)数据进行模式分析的一个前提条件是从时间序列数据中估计模式,然后将这些模式输入到模式分析中。在这里,我们关注研究设计(试验的顺序和间隔)与模式估计器的组合如何影响后续模式分析的I型错误率。当I型错误被夸大时,结果就不再有效,因此这项工作可为设计和分析具有可控假阳性率的多变量模式分析(MVPA)研究提供指导。所研究的MVPA策略是模式分类和相似性,利用来自同一功能运行的单次试验激活模式。主要关注最小二乘单模式估计器和最小二乘全模式估计器,我们表明模型中的共线性以及时间自相关会导致激活模式估计之间出现假阳性相关性,从而对模式相似性和分类分析的假阳性率产生不利影响。增加刺激间隔(ISI)似乎可以缓解这个问题,但激活模式之间仍然存在微弱的相关性,并在模式相似性分析中产生很大影响。除非试验是随机排序的,并且每个受试者有不同的随机化方式,否则仅使用从同一功能运行数据估计的激活模式进行模式相似性分析容易出现过高的假阳性。在其他情况下,如果试验顺序有任何结构,只有将相似性计算限制在来自独立运行的激活模式对时,才能获得有效的模式相似性分析结果。同样,对于模式分类,当交叉验证中的测试集和训练集不包含从同一运行估计的模式时,假阳性会最小化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验