Tang Fuzhou, Lei Xiaofeng, Xiong Yanlian, Wang Ruofeng, Mao Jinchun, Wang Xiang
Chongqing University Biomedical Engineering, Chongqing, PR China.
J Biomech. 2014 Oct 17;47(13):3400-7. doi: 10.1016/j.jbiomech.2014.07.022. Epub 2014 Jul 30.
The mechanical properties of vertebrate erythrocytes depend on their cytoskeletal protein networks. Membrane skeleton proteins spectrin and protein 4.1 (4.1R) cross-link with actin to maintain membrane stability under mechanical stress. Phosphorylation of 4.1R alters the affinity of 4.1R for spectrin-actin binding and this modulates the mechanical properties of human erythrocytes. In this study, phorbol 12-myristate-13-acetate (PMA)-induced phosphorylation of 4.1R was tested, erythrocyte deformability was determined and the erythrocyte elastic modulus was detected in human, chick, frog and fish. Furthermore, amino acid sequences of the functionally important domains of 4.1R were analyzed. Results showed that PMA-induced phosphorylation of 4.1R decreased erythrocyte deformability and this property was stable after 1h. The values of Young's modulus alteration gradually decreased from human to fish (0.388 ± 0.035 kPa, 0.219 ± 0.022 kPa, 0.191 ± 0.036 kPa and 0.141 ± 0.007 kPa). Ser-312 and Ser-331 are located within the consensus sequence recognized by protein kinase C (PKC); however, Ser-331 in zebrafish was replaced by Ala-331. The sequence of the 8 aa motif from vertebrate 4.1R showed only one amino acid mutation in frog and numerous substitutions in fish. Analyses of Young's modulus suggested that the interaction between 4.1R with the spectrin-actin binding domain may have a special relationship with the development of erythrocyte deformability. In addition, amino acid mutations in 4.1R further supported this relationship. Thus, we hypothesize that alteration of membrane skeleton protein binding affinity may play a potential role in the development of erythrocyte deformability, and alteration of Young's modulus values may provide a method for determining the deformability development of vertebrate erythrocytes.
脊椎动物红细胞的力学特性取决于其细胞骨架蛋白网络。膜骨架蛋白血影蛋白和蛋白4.1(4.1R)与肌动蛋白交联,以在机械应力下维持膜的稳定性。4.1R的磷酸化改变了4.1R与血影蛋白 - 肌动蛋白结合的亲和力,这调节了人类红细胞的力学特性。在本研究中,测试了佛波醇12 - 肉豆蔻酸酯 - 13 - 乙酸酯(PMA)诱导的4.1R磷酸化,测定了人、鸡、蛙和鱼的红细胞变形能力,并检测了红细胞弹性模量。此外,分析了4.1R功能重要结构域的氨基酸序列。结果表明,PMA诱导的4.1R磷酸化降低了红细胞变形能力,且该特性在1小时后稳定。杨氏模量变化值从人到鱼逐渐降低(0.388±0.035kPa、0.219±0.022kPa、0.191±0.036kPa和0.141±0.007kPa)。Ser - 312和Ser - 331位于蛋白激酶C(PKC)识别的共有序列内;然而,斑马鱼中的Ser - 331被Ala - 331取代。脊椎动物4.1R的8个氨基酸基序序列在蛙中仅显示一个氨基酸突变,在鱼中有大量替代。杨氏模量分析表明,4.1R与血影蛋白 - 肌动蛋白结合结构域之间的相互作用可能与红细胞变形能力的发展有特殊关系。此外,4.1R中的氨基酸突变进一步支持了这种关系。因此,我们假设膜骨架蛋白结合亲和力的改变可能在红细胞变形能力的发展中起潜在作用,并且杨氏模量值的改变可能为确定脊椎动物红细胞变形能力的发展提供一种方法。