Cacioppo Stephanie, Weiss Robin M, Runesha Hakizumwami Birali, Cacioppo John T
Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA; CCSN High Performance Electrical Neuroimaging Laboratory, University of Chicago, Chicago, IL 60637, USA.
CCSN High Performance Electrical Neuroimaging Laboratory, University of Chicago, Chicago, IL 60637, USA; Research Computing Center, University of Chicago, Chicago, IL 60637, USA.
J Neurosci Methods. 2014 Dec 30;238:11-34. doi: 10.1016/j.jneumeth.2014.09.009. Epub 2014 Sep 20.
Since Berger's first EEG recordings in 1929, several techniques, initially developed for investigating periodic processes, have been applied to study non-periodic event-related brain state dynamics.
We provide a theoretical comparison of the two approaches and present a new suite of data-driven analytic tools for the specific identification of the brain microstates in high-density event-related brain potentials (ERPs). This suite includes four different analytic methods. We validated this approach through a series of theoretical simulations and an empirical investigation of a basic visual paradigm, the reversal checkerboard task.
Results indicate that the present suite of data-intensive analytic techniques, improves the spatiotemporal information one can garner about non-periodic brain microstates from high-density electrical neuroimaging data.
COMPARISON WITH EXISTING METHOD(S): Compared to the existing methods (such as those based on k-clustering methods), the current micro-segmentation approach offers several advantages, including the data-driven (automatic) detection of non-periodic quasi-stable brain states.
This suite of quantitative methods allows the automatic detection of event-related changes in the global pattern of brain activity, putatively reflecting changes in the underlying neural locus for information processing in the brain, and event-related changes in overall brain activation. In addition, within-subject and between-subject bootstrapping procedures provide a quantitative means of investigating how robust are the results of the micro-segmentation.
自1929年伯杰首次进行脑电图记录以来,最初为研究周期性过程而开发的几种技术已被应用于研究与非周期性事件相关的脑状态动态。
我们对这两种方法进行了理论比较,并提出了一套新的数据驱动分析工具,用于在高密度事件相关脑电位(ERP)中具体识别脑微状态。该套件包括四种不同的分析方法。我们通过一系列理论模拟和对基本视觉范式(反转棋盘任务)的实证研究验证了这种方法。
结果表明,当前这套数据密集型分析技术提高了人们从高密度电神经成像数据中获取的关于非周期性脑微状态的时空信息。
与现有方法(如基于k聚类方法的那些方法)相比,当前的微分割方法具有几个优点,包括数据驱动(自动)检测非周期性准稳定脑状态。
这套定量方法允许自动检测与事件相关的脑活动全局模式变化,推测反映大脑中信息处理的潜在神经位点变化以及与事件相关的全脑激活变化。此外,受试者内和受试者间的自助程序提供了一种定量手段,用于研究微分割结果的稳健程度。