Leung Chun Yin Bosco, Fernandez-Gonzalez Rodrigo
Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3G9.
Methods Mol Biol. 2015;1189:99-113. doi: 10.1007/978-1-4939-1164-6_7.
The cell behaviors that drive tissue morphogenesis, such as division, migration, or death, are regulated at the molecular scale. Understanding how molecular events determine cell behavior requires simultaneous tracking and measurement of molecular and cellular dynamics. To this end, we have developed SIESTA, an integrated tool for Scientific ImagE SegmenTation and Analysis that enables quantification of cell behavior and molecular events from image data. Here we use SIESTA to show how to automatically delineate cells in images (segmentation) using the watershed algorithm, a region-growing method for boundary detection. For images in which automated segmentation is not possible due to low or inappropriate contrast, we use a minimal path search algorithm to semiautomatically delineate the cells. We use the segmentation results to quantify cellular morphology and molecular dynamics in different subcellular compartments, and demonstrate the whole process by analyzing cell behavior and the dynamics of the motor protein non-muscle myosin II during axis elongation in a Drosophila embryo. Finally, we show how image analysis can be used to quantify molecular asymmetries that orient cell behavior, and demonstrate this point by measuring planar cell polarity in Drosophila embryos. We describe all methods in detail to allow their implementation and application using other software packages. The use of (semi) automated quantitative imaging enables the analysis of a large number of samples, thus providing the statistical power necessary to detect subtle molecular differences that may result in differences in cell behavior.
驱动组织形态发生的细胞行为,如分裂、迁移或死亡,在分子尺度上受到调控。了解分子事件如何决定细胞行为需要同时追踪和测量分子及细胞动力学。为此,我们开发了SIESTA,这是一种用于科学图像分割与分析的集成工具,能够从图像数据中量化细胞行为和分子事件。在这里,我们使用SIESTA展示如何使用分水岭算法(一种用于边界检测的区域生长方法)在图像中自动勾勒细胞(分割)。对于因对比度低或不合适而无法进行自动分割的图像,我们使用最小路径搜索算法半自动地勾勒细胞。我们利用分割结果量化不同亚细胞区室中的细胞形态和分子动力学,并通过分析果蝇胚胎轴伸长过程中的细胞行为和运动蛋白非肌肉肌球蛋白II的动力学来演示整个过程。最后,我们展示了图像分析如何用于量化指导细胞行为的分子不对称性,并通过测量果蝇胚胎中的平面细胞极性来证明这一点。我们详细描述了所有方法,以便使用其他软件包进行实现和应用。使用(半)自动定量成像能够分析大量样本,从而提供检测可能导致细胞行为差异的细微分子差异所需的统计能力。