From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
From the Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
J Biol Chem. 2014 Nov 7;289(45):31241-52. doi: 10.1074/jbc.M114.584086. Epub 2014 Sep 22.
The actuator (A) domain of sarco(endo)plasmic reticulum Ca(2+)-ATPase not only plays a catalytic role but also undergoes large rotational movements that influence the distant transport sites through connections with transmembrane helices M1 and M2. Here we explore the importance of long helix M2 and its junction with the A domain by disrupting the helix structure and elongating with insertions of five glycine residues. Insertions into the membrane region of M2 and the top junctional segment impair Ca(2+) transport despite reasonable ATPase activity, indicating that they are uncoupled. These mutants fail to occlude Ca(2+). Those at the top segment also exhibited accelerated phosphoenzyme isomerization E1P → E2P. Insertions into the middle of M2 markedly accelerate E2P hydrolysis and cause strong resistance to inhibition by luminal Ca(2+). Insertions along almost the entire M2 region inhibit the dephosphorylated enzyme transition E2 → E1. The results pinpoint which parts of M2 control cytoplasm gating and which are critical for luminal gating at each stage in the transport cycle and suggest that proper gate function requires appropriate interactions, tension, and/or rigidity in the M2 region at appropriate times for coupling with A domain movements and catalysis.
肌浆网/内质网 Ca2+-ATP 酶的 A 结构域不仅具有催化作用,而且还会发生较大的旋转运动,通过与跨膜螺旋 M1 和 M2 的连接影响远处的转运部位。在此,我们通过破坏螺旋结构并通过插入五个甘氨酸残基来延长长螺旋 M2 及其与 A 结构域的连接,来探索其重要性。插入 M2 的膜区和顶部连接段会损害 Ca2+转运,尽管 ATP 酶活性合理,但表明它们是解偶联的。这些突变体无法阻断 Ca2+。位于顶部的那些也表现出加速的磷酸酶异构化 E1P→E2P。插入 M2 的中部会显著加速 E2P 水解,并导致对腔内腔 Ca2+抑制的强烈抗性。沿着几乎整个 M2 区域的插入会抑制去磷酸化酶的 E2→E1 转变。这些结果指出了 M2 的哪些部分控制细胞质门控,以及在运输循环的每个阶段对腔内腔门控至关重要的部分,并表明适当的门控功能需要在适当的时间在 M2 区域具有适当的相互作用、张力和/或刚性,以与 A 结构域的运动和催化相耦合。