Suppr超能文献

微小RNA-223协调胆固醇稳态。

MicroRNA-223 coordinates cholesterol homeostasis.

作者信息

Vickers Kasey C, Landstreet Stuart R, Levin Michael G, Shoucri Bassem M, Toth Cynthia L, Taylor Robert C, Palmisano Brian T, Tabet Fatiha, Cui Huanhuan L, Rye Kerry-Anne, Sethupathy Praveen, Remaley Alan T

机构信息

National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;

Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;

出版信息

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14518-23. doi: 10.1073/pnas.1215767111. Epub 2014 Sep 22.

Abstract

MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.

摘要

微小RNA(miRNA)调控多种生物学过程并有助于维持代谢稳态。在此,我们证明了微小RNA - 223(miR - 223),一种先前与炎症相关的miRNA,也控制着与胆固醇代谢相关的多种机制。在肝癌细胞中,发现miR - 223的启动子活性和成熟水平与细胞胆固醇状态相关。此外,在易患动脉粥样硬化的小鼠中,高胆固醇血症与肝脏miR - 223水平升高有关。在人类中,发现miR - 223通过直接靶向和抑制清道夫受体BI来调节高密度脂蛋白胆固醇(HDL - C)摄取,并通过直接抑制固醇酶3 - 羟基 - 3 - 甲基戊二酰辅酶A合酶1和甲基固醇单加氧酶1来抑制胆固醇生物合成。此外,发现miR - 223通过Sp3间接促进ATP结合盒转运蛋白A1的表达(mRNA和蛋白质),从而增强细胞胆固醇外流。最后,在小鼠中对miR - 223进行基因敲除导致HDL - C水平和颗粒大小增加,以及肝脏和血浆总胆固醇水平升高。总之,我们通过对脂蛋白和胆固醇代谢中多个基因的转录后协同控制,确定了miR - 223在全身胆固醇调节中的关键作用。

相似文献

1
MicroRNA-223 coordinates cholesterol homeostasis.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14518-23. doi: 10.1073/pnas.1215767111. Epub 2014 Sep 22.
3
MiR-33 contributes to the regulation of cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.
5
MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Sep;1862(9):929-938. doi: 10.1016/j.bbalip.2017.06.002. Epub 2017 Jun 8.
7
microRNAs in lipoprotein metabolism and cardiometabolic disorders.
Atherosclerosis. 2016 Mar;246:352-60. doi: 10.1016/j.atherosclerosis.2016.01.025. Epub 2016 Jan 18.
8
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1566-9. doi: 10.1126/science.1189123. Epub 2010 May 13.
9
MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2707-14. doi: 10.1161/ATVBAHA.111.232066.

引用本文的文献

2
Global Perspectives on Coronary Artery Disease: The Emerging Role of miRNAs.
Curr Atheroscler Rep. 2025 Jun 17;27(1):66. doi: 10.1007/s11883-025-01309-8.
3
Uremic toxins levels are associated with miR-223 in chronic kidney disease-associated anemia.
Noncoding RNA Res. 2025 May 2;13:121-130. doi: 10.1016/j.ncrna.2025.04.009. eCollection 2025 Aug.
5
Treatment of Pathological Lymphangiogenesis via Circular RNA-Mediated Cholesterol Metabolism Remodeling.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):26. doi: 10.1167/iovs.66.4.26.
6
Recent progress in exosomal non-coding RNAs research related to idiopathic pulmonary fibrosis.
Front Genet. 2025 Mar 27;16:1556495. doi: 10.3389/fgene.2025.1556495. eCollection 2025.
8
Epigenetic regulation in coronary artery disease: from mechanisms to emerging therapies.
Front Mol Biosci. 2025 Jan 31;12:1548355. doi: 10.3389/fmolb.2025.1548355. eCollection 2025.
10
MicroRNA 223 Enhances ABCA1 Protein Stability and Supports Efflux in Cholesterol-Burdened Macrophages.
Cell Biochem Biophys. 2025 Jun;83(2):1943-1954. doi: 10.1007/s12013-024-01603-3. Epub 2024 Nov 14.

本文引用的文献

2
Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.
Circ Res. 2013 Jun 7;112(12):1592-601. doi: 10.1161/CIRCRESAHA.112.300626. Epub 2013 Mar 21.
3
MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer.
Cancer Lett. 2013 Jul 28;335(2):455-62. doi: 10.1016/j.canlet.2013.03.003. Epub 2013 Mar 14.
5
MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia.
Hepatology. 2013 Feb;57(2):533-42. doi: 10.1002/hep.25846. Epub 2012 Jul 6.
6
MicroRNA-223 regulates FOXO1 expression and cell proliferation.
FEBS Lett. 2012 Apr 5;586(7):1038-43. doi: 10.1016/j.febslet.2012.02.050. Epub 2012 Mar 8.
8
miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay.
Science. 2012 Apr 13;336(6078):237-40. doi: 10.1126/science.1215691.
9
MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms.
FASEB J. 2012 Jul;26(7):3032-41. doi: 10.1096/fj.11-201855. Epub 2012 Mar 29.
10
Lipid-based carriers of microRNAs and intercellular communication.
Curr Opin Lipidol. 2012 Apr;23(2):91-7. doi: 10.1097/MOL.0b013e328350a425.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验