Suppr超能文献

一种用于在网络中寻找社区的直流编程方法。

A DC programming approach for finding communities in networks.

作者信息

Le Thi Hoai An, Nguyen Manh Cuong, Dinh Tao Pham

机构信息

Laboratory of Theoretical and Applied Computer Science, University of Lorraine, Ile du Saulcy, 57045 Metz, France

出版信息

Neural Comput. 2014 Dec;26(12):2827-54. doi: 10.1162/NECO_a_00673. Epub 2014 Sep 23.

Abstract

Automatic discovery of community structures in complex networks is a fundamental task in many disciplines, including physics, biology, and the social sciences. The most used criterion for characterizing the existence of a community structure in a network is modularity, a quantitative measure proposed by Newman and Girvan (2004). The discovery community can be formulated as the so-called modularity maximization problem that consists of finding a partition of nodes of a network with the highest modularity. In this letter, we propose a fast and scalable algorithm called DCAM, based on DC (difference of convex function) programming and DCA (DC algorithms), an innovative approach in nonconvex programming framework for solving the modularity maximization problem. The special structure of the problem considered here has been well exploited to get an inexpensive DCA scheme that requires only a matrix-vector product at each iteration. Starting with a very large number of communities, DCAM furnishes, as output results, an optimal partition together with the optimal number of communities [Formula: see text]; that is, the number of communities is discovered automatically during DCAM's iterations. Numerical experiments are performed on a variety of real-world network data sets with up to 4,194,304 nodes and 30,359,198 edges. The comparative results with height reference algorithms show that the proposed approach outperforms them not only on quality and rapidity but also on scalability. Moreover, it realizes a very good trade-off between the quality of solutions and the run time.

摘要

在包括物理学、生物学和社会科学在内的许多学科中,自动发现复杂网络中的社区结构是一项基本任务。用于表征网络中社区结构存在的最常用标准是模块度,这是纽曼和吉尔万(2004年)提出的一种定量度量。发现社区可以被表述为所谓的模块度最大化问题,即找到具有最高模块度的网络节点划分。在这封信中,我们基于DC(凸函数差)规划和DCA(DC算法)提出了一种快速且可扩展的算法DCAM,这是一种在非凸规划框架中用于解决模块度最大化问题的创新方法。这里所考虑问题的特殊结构已被充分利用,以获得一种廉价的DCA方案,该方案在每次迭代时仅需要一次矩阵向量乘法。从大量社区开始,DCAM输出的结果是一个最优划分以及最优社区数量[公式:见原文];也就是说,在DCAM的迭代过程中会自动发现社区数量。我们对各种具有多达4,194,304个节点和30,359,198条边的真实世界网络数据集进行了数值实验。与高度参考算法的比较结果表明,所提出的方法不仅在质量和速度上优于它们,而且在可扩展性上也更胜一筹。此外,它在解决方案质量和运行时间之间实现了非常好的权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验