Suppr超能文献

网络模块化最大化中的回路与多重边

Loops and multiple edges in modularity maximization of networks.

作者信息

Cafieri Sonia, Hansen Pierre, Liberti Leo

机构信息

Department Mathématiques et Informatique, Ecole Nationale de l'Aviation Civile, 7 av E Belin, F-31055 Toulouse, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046102. doi: 10.1103/PhysRevE.81.046102. Epub 2010 Apr 2.

Abstract

The modularity maximization model proposed by Newman and Girvan for the identification of communities in networks works for general graphs possibly with loops and multiple edges. However, the applications usually correspond to simple graphs. These graphs are compared to a null model where the degree distribution is maintained but edges are placed at random. Therefore, in this null model there will be loops and possibly multiple edges. Sharp bounds on the expected number of loops, and their impact on the modularity, are derived. Then, building upon the work of Massen and Doye, but using algebra rather than simulation, we propose modified null models associated with graphs without loops but with multiple edges, graphs with loops but without multiple edges and graphs without loops nor multiple edges. We validate our models by using the exact algorithm for clique partitioning of Grötschel and Wakabayashi.

摘要

纽曼和吉尔万提出的用于识别网络中社区的模块化最大化模型适用于可能存在环和多重边的一般图。然而,其应用通常对应于简单图。这些图与一个空模型进行比较,在空模型中度数分布保持不变,但边是随机放置的。因此,在这个空模型中会存在环并且可能有多重边。推导出了环的预期数量的精确界限及其对模块化的影响。然后,在马森和多伊工作的基础上,但使用代数而非模拟,我们提出了与无环但有多重边的图、有环但无多重边的图以及无环且无多重边的图相关的修正空模型。我们通过使用格罗特舍尔和若林的团划分精确算法来验证我们的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验