Mammatas Lemonitsa H, Verheul Henk M W, Hendrikse N Harry, Yaqub Maqsood, Lammertsma Adriaan A, Menke-van der Houven van Oordt C Willemien
Dept of Medical Oncology VUmc Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Cell Oncol (Dordr). 2015 Feb;38(1):49-64. doi: 10.1007/s13402-014-0194-4. Epub 2014 Sep 24.
Molecular imaging has been defined as the visualization, characterization and measurement of biological processes at the molecular and cellular level in humans and other living systems. In oncology it enables to visualize (part of) the functional behaviour of tumour cells, in contrast to anatomical imaging that focuses on the size and location of malignant lesions. Available molecular imaging techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET) and optical imaging. In PET, a radiotracer consisting of a positron emitting radionuclide attached to the biologically active molecule of interest is administrated to the patient. Several approaches have been undertaken to use PET for the improvement of personalized cancer care. For example, a variety of radiolabelled ligands have been investigated for intratumoural target identification and radiolabelled drugs have been developed for direct visualization of the biodistibution in vivo, including intratumoural therapy uptake. First indications of the clinical value of PET for target identification and response prediction in oncology have been reported. This new imaging approach is rapidly developing, but uniformity of scanning processes, standardized methods for outcome evaluation and implementation in daily clinical practice are still in progress. In this review we discuss the available literature on molecular imaging with PET for personalized targeted treatment strategies.
Molecular imaging with radiolabelled targeted anticancer drugs has great potential for the improvement of personalized cancer care. The non-invasive quantification of drug accumulation in tumours and normal tissues provides understanding of the biodistribution in relation to therapeutic and toxic effects.
分子成像被定义为在人类和其他生物系统中,对分子和细胞水平的生物过程进行可视化、表征和测量。在肿瘤学中,与专注于恶性病变大小和位置的解剖成像不同,它能够可视化肿瘤细胞的(部分)功能行为。现有的分子成像技术包括单光子发射计算机断层扫描(SPECT)、正电子发射断层扫描(PET)和光学成像。在PET中,将一种由附着于感兴趣的生物活性分子上的正电子发射放射性核素组成的放射性示踪剂注入患者体内。已经采取了多种方法利用PET来改善个性化癌症治疗。例如,已经研究了多种放射性标记配体用于肿瘤内靶点识别,并且已经开发了放射性标记药物用于直接可视化体内生物分布,包括肿瘤内治疗摄取。已经报道了PET在肿瘤学中用于靶点识别和反应预测的临床价值的初步迹象。这种新的成像方法正在迅速发展,但扫描过程的一致性、结果评估的标准化方法以及在日常临床实践中的应用仍在推进。在本综述中,我们讨论了关于利用PET进行分子成像以制定个性化靶向治疗策略的现有文献。
用放射性标记的靶向抗癌药物进行分子成像在改善个性化癌症治疗方面具有巨大潜力。对肿瘤和正常组织中药物蓄积进行无创定量,有助于了解与治疗和毒性作用相关的生物分布情况。