Suppr超能文献

激光扫描星形胶质细胞图谱显示,新生儿皮质冷冻损伤后谷氨酸反应域增大,谷氨酸摄取成熟受到破坏。

Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion.

机构信息

Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA.

出版信息

Front Cell Neurosci. 2014 Sep 9;8:277. doi: 10.3389/fncel.2014.00277. eCollection 2014.

Abstract

Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL) model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM), which combines glutamate transport current (TC) recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

摘要

星形胶质细胞摄取谷氨酸可调节细胞外神经递质动态、受体激活和突触形成。在发育过程中,谷氨酸转运能力增强。新生儿脑损伤如何影响谷氨酸转运的功能成熟仍未可知。新生儿脑损伤可导致发育迟缓、认知障碍和癫痫;已知谷氨酸转运的破坏会导致突触形成、受体激活和癫痫发作的改变。本研究使用新生期冷冻损伤(FL)模型,研究了损伤如何影响星形胶质细胞谷氨酸转运的成熟。由于损伤发生在出生当天,此时星形胶质细胞的功能仍不成熟,因此该模型非常适合研究损伤后星形胶质细胞成熟的变化。该模型中已知存在反应性星形胶质细胞增生、星形胶质细胞增殖和体外过度兴奋。为了更精确地探测星形胶质细胞的谷氨酸转运,我们开发了一种新的技术,即激光扫描星形胶质细胞测绘(LSAM),它结合了从星形胶质细胞记录的谷氨酸转运电流(TC)和激光扫描谷氨酸光解。LSAM 使我们能够识别单个星形胶质细胞可以转运谷氨酸的区域,并定量该区域内谷氨酸清除动力学的空间异质性。使用 LSAM,我们报告称,FL 后皮质星形胶质细胞的谷氨酸反应区域增加,与近端突起相比,远端突起的 TC 衰减时间更快。此外,FL 后,从 GLAST 主导清除向 GLT-1 主导清除的发育转变被破坏。这些发现引入了一种新的方法来探测星形胶质细胞的谷氨酸摄取,并表明新生儿皮质 FL 破坏了皮质星形胶质细胞的功能成熟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb0b/4158796/95b7224f58ed/fncel-08-00277-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验