Cao Qiang, Wang Xianfeng, Jia Lin, Mondal Ashis K, Diallo Abdoulaye, Hawkins Gregory A, Das Swapan K, Parks John S, Yu Liqing, Shi Huidong, Shi Hang, Xue Bingzhong
Department of Biology and Center for Obesity Reversal (Q.C., H.S., B.X.), Georgia State University, Atlanta, Georgia; Departments of Internal Medicine (Q.C., X.W., A.K.M., A.D., G.A.H., S.K.D., H.S., B.X.) and Pathology (J.S.P.), Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Internal Medicine (L.J.), University of Texas, Southwestern Medical Center, Dallas, Texas; Department of Animal and Avian Sciences (L.Y.), University of Maryland, College Park, Maryland; and Department of Biochemistry and Molecular Biology (H.S.), Georgia Regents University, Augusta, Georgia.
Endocrinology. 2014 Dec;155(12):4925-38. doi: 10.1210/en.2014-1595. Epub 2014 Sep 24.
Inflammation marks all stages of atherogenesis. DNA hypermethylation in the whole genome or specific genes is associated with inflammation and cardiovascular diseases. Therefore, we aimed to study whether inhibiting DNA methylation by DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) ameliorates atherosclerosis in low-density lipoprotein receptor knockout (Ldlr(-/-)) mice. Ldlr(-/-) mice were fed an atherogenic diet and adminisered saline or 5-aza-dC (0.25 mg/kg) for up to 30 weeks. 5-aza-dC treatment markedly decreased atherosclerosis development in Ldlr(-/-) mice without changes in body weight, plasma lipid profile, macrophage cholesterol levels and plaque lipid content. Instead, this effect was associated with decreased macrophage inflammation. Macrophages with 5-aza-dC treatment had downregulated expression of genes involved in inflammation (TNF-α, IL-6, IL-1β, and inducible nitric oxidase) and chemotaxis (CD62/L-selectin, chemokine [C-C motif] ligand 2/MCP-1 [CCL2/MCP-1], CCL5, CCL9, and CCL2 receptor CCR2). This resulted in attenuated macrophage migration and adhesion to endothelial cells and reduced macrophage infiltration into atherosclerotic plaques. 5-aza-dC also suppressed macrophage endoplasmic reticulum stress, a key upstream signal that activates macrophage inflammation and apoptotic pathways. Finally, 5-aza-dC demethylated liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ1 (PPARγ1) promoters, which are both enriched with CpG sites. This led to overexpression of LXRα and PPARγ, which may be responsible for 5-aza-dC's anti-inflammatory and atheroprotective effect. Our findings provide strong evidence that DNA methylation may play a significant role in cardiovascular diseases and serve as a therapeutic target for prevention and treatment of atherosclerosis.
炎症贯穿动脉粥样硬化发生发展的各个阶段。全基因组或特定基因的DNA高甲基化与炎症及心血管疾病相关。因此,我们旨在研究DNA甲基转移酶抑制剂5-氮杂-2'-脱氧胞苷(5-aza-dC)抑制DNA甲基化是否能改善低密度脂蛋白受体敲除(Ldlr(-/-))小鼠的动脉粥样硬化。给Ldlr(-/-)小鼠喂食致动脉粥样硬化饮食,并给予生理盐水或5-aza-dC(0.25 mg/kg),持续30周。5-aza-dC治疗显著减少了Ldlr(-/-)小鼠的动脉粥样硬化发展,而体重、血浆脂质谱、巨噬细胞胆固醇水平和斑块脂质含量均无变化。相反,这种作用与巨噬细胞炎症的减轻有关。经5-aza-dC处理的巨噬细胞中,参与炎症(肿瘤坏死因子-α、白细胞介素-6、白细胞介素-1β和诱导型一氧化氮合酶)和趋化作用(CD62/L-选择素、趋化因子[C-C基序]配体2/单核细胞趋化蛋白-1[CCL2/MCP-1]、CCL5、CCL9和CCL2受体CCR2)的基因表达下调。这导致巨噬细胞迁移和对内皮细胞的黏附减弱,以及巨噬细胞向动脉粥样硬化斑块内浸润减少。5-aza-dC还抑制了巨噬细胞内质网应激,内质网应激是激活巨噬细胞炎症和凋亡途径的关键上游信号。最后,5-aza-dC使肝脏X受体α(LXRα)和过氧化物酶体增殖物激活受体γ1(PPARγ1)启动子去甲基化,这两个启动子均富含CpG位点。这导致LXRα和PPARγ过表达,这可能是5-aza-dC抗炎和动脉粥样硬化保护作用的原因。我们的研究结果提供了有力证据,表明DNA甲基化可能在心血管疾病中起重要作用,并可作为预防和治疗动脉粥样硬化的治疗靶点。