Hariharan Venkatesh, Asimaki Angeliki, Michaelson Jarett E, Plovie Eva, MacRae Calum A, Saffitz Jeffrey E, Huang Hayden
Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 500 W 120th Street, MC 8904, New York, NY 10027, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Pathology, Harvard Medical School, Boston, MA, USA.
Cardiovasc Res. 2014 Nov 1;104(2):280-9. doi: 10.1093/cvr/cvu212. Epub 2014 Sep 24.
The majority of patients diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) have mutations in genes encoding desmosomal proteins, raising the possibility that abnormal intercellular adhesion plays an important role in disease pathogenesis. We characterize cell mechanical properties and molecular responses to oscillatory shear stress in cardiac myocytes expressing mutant forms of the desmosomal proteins, plakoglobin and plakophilin, which are linked to ARVC in patients.
Cells expressing mutant plakoglobin or plakophilin showed no differences in cell-cell adhesion relative to controls, while knocking down these proteins weakened cell-cell adhesion. However, cells expressing mutant plakoglobin failed to increase the amount of immunoreactive signal for plakoglobin or N-cadherin at cell-cell junctions in response to shear stress, as seen in control cells. Cells expressing mutant plakophilin exhibited a similar attenuation in the shear-induced increase in junctional plakoglobin immunoreactive signal in response to shear stress, suggesting that the phenotype is independent of the type of mutant protein being expressed. Cells expressing mutant plakoglobin also showed greater myocyte apoptosis compared with controls. Apoptosis rates increased greatly in response to shear stress in cells expressing mutant plakoglobin, but not in controls. Abnormal responses to shear stress in cells expressing either mutant plakoglobin or plakophilin could be reversed by SB216763, a GSK3β inhibitor.
Desmosomal mutations linked to ARVC do not significantly affect cell mechanical properties, but cause myocytes to respond abnormally to mechanical stress through a mechanism involving GSK3β. These results may help explain why patients with ARVC experience disease exacerbations following strenuous exercise.
大多数被诊断为致心律失常性右室心肌病(ARVC)的患者在编码桥粒蛋白的基因中存在突变,这增加了细胞间黏附异常在疾病发病机制中起重要作用的可能性。我们对表达与患者ARVC相关的桥粒蛋白(如桥粒斑珠蛋白和桥粒芯蛋白)突变形式的心肌细胞的细胞力学特性和对振荡剪切应力的分子反应进行了表征。
表达突变型桥粒斑珠蛋白或桥粒芯蛋白的细胞与对照相比,细胞间黏附无差异,而敲低这些蛋白会削弱细胞间黏附。然而,与对照细胞不同,表达突变型桥粒斑珠蛋白的细胞在受到剪切应力时,未能增加细胞间连接处桥粒斑珠蛋白或N-钙黏蛋白的免疫反应信号量。表达突变型桥粒芯蛋白的细胞在剪切应力作用下,连接处桥粒斑珠蛋白免疫反应信号的剪切诱导增加也表现出类似的减弱,这表明该表型与所表达的突变蛋白类型无关。与对照相比,表达突变型桥粒斑珠蛋白的细胞也表现出更大的心肌细胞凋亡。在表达突变型桥粒斑珠蛋白的细胞中,凋亡率在受到剪切应力时大幅增加,而对照细胞则没有。GSK3β抑制剂SB216763可逆转表达突变型桥粒斑珠蛋白或桥粒芯蛋白的细胞对剪切应力的异常反应。
与ARVC相关的桥粒突变不会显著影响细胞力学特性,但会通过涉及GSK3β的机制使心肌细胞对机械应力产生异常反应。这些结果可能有助于解释为什么ARVC患者在剧烈运动后病情会加重。