Peng Jia, Wigglesworth Karen, Rangarajan Adithya, Eppig John J, Thompson Thomas B, Matzuk Martin M
Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas.
The Jackson Laboratory, Bar Harbor, Maine.
Biol Reprod. 2014 Dec;91(6):142. doi: 10.1095/biolreprod.114.123158. Epub 2014 Sep 24.
Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted paralogs of the transforming growth factor beta (TGFbeta) superfamily. In mammals, these two growth factors play critical roles in folliculogenesis. As previously reported, an arginine in the pre-helix loop of GDF5 defines the high binding specificity to its type 1 receptor. Interestingly, bioactive mouse GDF9 and human BMP15 share the conserved arginine in the pre-helix loop, but their low-activity counterparts (mouse BMP15 and human GDF9) have a glycine or a proline instead. To address the question of whether the arginine residue defines the different activities of GDF9 and BMP15 homodimers and their heterodimers in human and mouse, we used site-directed mutagenesis to change the species-specific residues in human and mouse proteins, and examined their activities in our in vitro assays. Although amino acid 72 of mature GDF9 is responsible for altered homodimer bioactivities, neither the corresponding BMP15 amino acid 62 nor the intact pre-helix loop is indispensable for BMP15 homodimer activity. However, amino acid 72 in GDF9 only has only subtle effects on GDF9:BMP15 heterodimer activity. Based on previous studies and our recent findings, we provide hypothetical models to understand the molecular mechanism to define activities of the homodimeric and heterodimeric ligands. The arginine residue in the pre-helix loop of GDF9 homodimer may prevent the inhibition from its pro-domain or directly alter receptor binding, but this residue in GDF9 does not significantly affect the heterodimer activity, because of suggested conformational changes during heterodimer formation.
生长分化因子9(GDF9)和骨形态发生蛋白15(BMP15)是卵母细胞分泌的转化生长因子β(TGFβ)超家族的旁系同源物。在哺乳动物中,这两种生长因子在卵泡发生中起关键作用。如先前报道,GDF5螺旋前环中的一个精氨酸决定了其对1型受体的高结合特异性。有趣的是,具有生物活性的小鼠GDF9和人BMP15在螺旋前环中具有保守的精氨酸,但它们低活性的对应物(小鼠BMP15和人GDF9)则分别具有甘氨酸或脯氨酸。为了解决精氨酸残基是否决定了人和小鼠中GDF9和BMP15同二聚体及其异二聚体的不同活性这一问题,我们使用定点诱变来改变人和小鼠蛋白质中的物种特异性残基,并在我们的体外试验中检测它们的活性。尽管成熟GDF9的第72位氨基酸负责改变同二聚体的生物活性,但相应的BMP15第62位氨基酸或完整的螺旋前环对于BMP15同二聚体活性并非不可或缺。然而,GDF9中的第72位氨基酸对GDF9:BMP15异二聚体活性只有细微影响。基于先前的研究和我们最近的发现,我们提供了假设模型来理解定义同二聚体和异二聚体配体活性的分子机制。GDF9同二聚体螺旋前环中的精氨酸残基可能会阻止其前结构域的抑制作用或直接改变受体结合,但由于异二聚体形成过程中可能发生的构象变化,GDF9中的这个残基对异二聚体活性没有显著影响。