Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
J Am Chem Soc. 2014 Oct 22;136(42):14966-73. doi: 10.1021/ja507971r. Epub 2014 Oct 7.
Porous coordination polymers (PCPs) are an intriguing class of molecular-based materials because of the designability of framework scaffolds, pore sizes and pore surface functionalities. Besides the structural designability at the molecular scale, the structuring of PCPs into mesoscopic/macroscopic morphologies has attracted much attention due to the significance for the practical applications. The structuring of PCPs at the mesoscopic/macroscopic scale has been so far demonstrated by the spatial localization of coordination reactions on the surface of templates or at the phase boundaries. However, these methodologies have never been applied to the fabrication of solid-solution or multivariate metal-organic frameworks (MOFs), in which multiple components are homogeneously mixed. Herein, we demonstrate the structuring of a box-type superstructure comprising of a solid-solution PCP by integrating a bidirectional diffusion of multiple organic ligands into molecular assembly. The parent crystals of [Zn2(ndc)2(bpy)]n were placed in the DMF solution of additional organic component of H2bdc, and the temperature was rapidly elevated up to 80 °C (ndc = 1,4-naphthalenedicarboxylate, bpy = 4,4'-bipyridyl, bdc = 1,4-benzenedicarboxylate). The dissolution of the parent crystals induced the outward diffusion of components; contrariwise, the accumulation of the other organic ligand of H2bdc induced the inward diffusion toward the surface of the parent crystals. This bidirectional diffusion of multiple components spatially localized the recrystallization at the surface of cuboid parent crystals; therefore, the nanocrystals of a solid-solution PCP ([Zn2(bdc)1.5(ndc)0.5(bpy)]n) were organized into a mesoscopic box superstructure. Furthermore, we demonstrated that the box superstructures enhanced the mass transfer kinetics for the separation of hydrocarbons.
多孔配位聚合物(PCPs)是一类引人入胜的分子基材料,因为其骨架结构、孔径和孔表面官能团的可设计性。除了在分子尺度上进行结构设计外,将 PCP 结构化到介观/宏观形态也引起了广泛关注,因为这对于实际应用具有重要意义。迄今为止,通过在模板表面或相界面上的配位反应的空间定位,实现了 PCP 在介观/宏观尺度上的结构化。然而,这些方法从未应用于固溶体或多元金属-有机骨架(MOFs)的制造,在这些骨架中,多个组分均匀混合。在此,我们通过将多种有机配体的双向扩散集成到分子组装中,展示了一种由固溶体 PCP 组成的盒型超结构的结构化。将[Zn2(ndc)2(bpy)]n 的母体晶体放置在含有额外有机组分 H2bdc 的 DMF 溶液中,并迅速将温度升高至 80°C(ndc = 1,4-萘二羧酸,bpy = 4,4'-联吡啶,bdc = 1,4-苯二甲酸)。母体晶体的溶解诱导了组分的向外扩散;相反,其他有机配体 H2bdc 的积累则导致其向母体晶体表面的向内扩散。这种多种组分的双向扩散将重结晶空间定位于长方体母体晶体的表面;因此,固溶体 PCP([Zn2(bdc)1.5(ndc)0.5(bpy)]n)的纳米晶体被组织成介观盒型超结构。此外,我们证明了盒型超结构增强了烃类分离的传质动力学。