Silva Arnaldo F, Richter Wagner E, Meneses Helen G C, Bruns Roy E
Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13084-970 Campinas, SP, Brazil.
Phys Chem Chem Phys. 2014 Nov 14;16(42):23224-32. doi: 10.1039/c4cp02922d.
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
原子电荷转移 - 反极化效应决定了简单碳氢化合物(甲烷、乙烯、乙烷、丙炔、环丙烷和丙二烯)的大多数红外基本CH强度。分子中原子的量子理论/电荷 - 电荷通量 - 偶极通量模型预测了30个CH强度值,范围从0到123 km mol⁻¹,均方根(rms)误差仅为4.2 km mol⁻¹,且未包含特定的平衡原子电荷项。涉及电荷通量和/或偶极通量项的贡献之和平均为20.3 km mol⁻¹,约为平均电荷贡献2.0 km mol⁻¹的十倍。唯一显著的例外是乙炔的CH伸缩和弯曲强度以及与sp杂化碳原子相连的氢的丙炔的两种振动。计算在四个量子水平上进行,即MP2/6 - 311++G(3d,3p)、MP2/cc - pVTZ、QCISD/6 - 311++G(3d,3p)和QCISD/cc - pVTZ。在QCISD水平计算的结果在这四个中最准确,对于6 - 311++G(3d,3p)和cc - pVTZ基组,均方根误差分别为4.7和5.0 km mol⁻¹。这些值接近碳氢化合物强度的估计总实验误差4.0 km mol⁻¹。对于所有四个量子水平的结果,原子电荷转移 - 反极化效应远大于电荷效应。预计电荷转移 - 反极化效应在更极性分子的振动中也很重要,对于这些分子,平衡电荷贡献可能很大。