Suppr超能文献

顺式玉米赤霉烯酮的体外I相代谢

In vitro phase I metabolism of cis-zearalenone.

作者信息

Drzymala Sarah S, Herrmann Antje J, Maul Ronald, Pfeifer Dietmar, Garbe Leif-Alexander, Koch Matthias

机构信息

Department of Analytical Chemistry; Reference Materials, Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany.

出版信息

Chem Res Toxicol. 2014 Nov 17;27(11):1972-8. doi: 10.1021/tx500312g. Epub 2014 Oct 15.

Abstract

The present study investigates the in vitro phase I metabolism of cis-zearalenone (cis-ZEN) in rat liver microsomes and human liver microsomes. cis-ZEN is an often ignored isomer of the trans-configured Fusarium mycotoxin zearalenone (trans-ZEN). Upon the influence of (UV-) light, trans-ZEN isomerizes to cis-ZEN. Therefore, cis-ZEN is also present in food and feed. The aim of our study was to evaluate the in vitro phase I metabolism of cis-ZEN in comparison to that of trans-ZEN. As a result, an extensive metabolization of cis-ZEN is observed for rat and human liver microsomes as analyzed by HPLC-MS/MS and high-resolution MS. Kinetic investigations based on the substrate depletion approach showed no significant difference in rate constants and half-lives for cis- and trans-ZEN in rat microsomes. In contrast, cis-ZEN was depleted about 1.4-fold faster than trans-ZEN in human microsomes. The metabolite pattern of cis-ZEN revealed a total of 10 phase I metabolites. Its reduction products, α- and β-cis-zearalenol (α- and β-cis-ZEL), were found as metabolites in both species, with α-cis-ZEL being a major metabolite in rat liver microsomes. Both compounds were identified by co-chromatography with synthesized authentic standards. A further major metabolite in rat microsomes was monohydroxylated cis-ZEN. In human microsomes, monohydroxylated cis-ZEN is the single dominant peak of the metabolite profile. Our study discloses three metabolic pathways for cis-ZEN: reduction of the keto-group, monohydroxylation, and a combination of both. Because these routes have been reported for trans-ZEN, we conclude that the phase I metabolism of cis-ZEN is essentially similar to that of its trans isomer. As trans-ZEN is prone to metabolic activation, leading to the formation of more estrogenic metabolites, the novel metabolites of cis-ZEN reported in this study, in particular α-cis-ZEL, might also show higher estrogenicity.

摘要

本研究调查了顺式玉米赤霉烯酮(cis-ZEN)在大鼠肝微粒体和人肝微粒体中的体外I相代谢。cis-ZEN是反式构象的镰刀菌霉菌毒素玉米赤霉烯酮(trans-ZEN)一种常被忽视的异构体。在(紫外)光的影响下,trans-ZEN异构化为cis-ZEN。因此,cis-ZEN也存在于食品和饲料中。我们研究的目的是评估cis-ZEN与trans-ZEN相比的体外I相代谢。结果,通过HPLC-MS/MS和高分辨率质谱分析,在大鼠和人肝微粒体中观察到cis-ZEN的广泛代谢。基于底物消耗法的动力学研究表明,大鼠微粒体中cis-ZEN和trans-ZEN的速率常数和半衰期没有显著差异。相比之下,在人微粒体中,cis-ZEN的消耗速度比trans-ZEN快约1.4倍。cis-ZEN的代谢产物模式共显示出10种I相代谢产物。其还原产物α-和β-顺式玉米赤霉醇(α-和β-cis-ZEL)在两个物种中均作为代谢产物被发现,α-cis-ZEL是大鼠肝微粒体中的主要代谢产物。通过与合成的标准品共色谱法鉴定了这两种化合物。大鼠微粒体中的另一种主要代谢产物是单羟基化的cis-ZEN。在人微粒体中,单羟基化的cis-ZEN是代谢产物谱中的单一主峰。我们的研究揭示了cis-ZEN的三种代谢途径:酮基还原、单羟基化以及两者的结合。因为这些途径已在trans-ZEN中被报道,我们得出结论,cis-ZEN的I相代谢与其反式异构体基本相似。由于trans-ZEN易于发生代谢活化,导致形成更多具有雌激素活性的代谢产物,本研究中报道的cis-ZEN的新代谢产物,特别是α-cis-ZEL,可能也具有更高的雌激素活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验