Suppr超能文献

具有均匀分布的 Fe3O4 纳米粒子掺杂的分级多孔 MnO2 微球用于超级电容器。

Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Institute of Materials Engineering, Nanjing University , Nanjing, Jiangsu 210093, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17637-46. doi: 10.1021/am505622c. Epub 2014 Oct 6.

Abstract

Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

摘要

通过一步法和低成本的超声辅助方法合成了具有 Fe3O4 纳米粒子掺杂的分级多孔且密集堆积的 MnO2 微球。这种可扩展的合成方法基于 Fe(2+),并在 25-70°C 的恒定温度范围内通过超声辅助成核和生长。直径为 3-5nm 的单晶 Fe3O4 颗粒均匀分布在整个球体中,没有颗粒在表面。通过对反应参数的系统优化,得到了孤立、多孔且均匀的 Fe3O4-MnO2 复合球体。球体的平均直径取决于温度,因此可以在 0.7-1.28μm 的范围内进行控制。讨论了所涉及的生长机制。在扫描速率为 5mV/s 时,Fe/Mn 原子比 r = 0.075 时的比电容优化值为 448F/g,是 MnO2 纳米结构极高报道值(309F/g)的近 1.5 倍。特别是,这种结构允许在高充电率下显著提高稳定性。在 100mV/s 的高扫描速率下,该复合材料的电容为 367.4F/g,是在 5mV/s 时的 82%。此外,它具有出色的循环性能,在 5A/g 的电流密度下进行 5000 次充放电循环后,电容保持率为 76%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验