Dessie Yilkal, Bekele Eneyew Tilahun, Gonfa Bedasa Abdisa, Ravikumar C R, Khasim Syed, Abraham Getahun
Department of Applied Chemistry, College of Applied Natural Science, Adama Science and Technology University 1888 Adama Ethiopia
Research Centre, Department of Science, East-West Institute of Technology Bangalore 560091 India.
RSC Adv. 2025 May 16;15(21):16493-16509. doi: 10.1039/d5ra02075a. eCollection 2025 May 15.
MnO and FeO nanoparticles' slow ion-diffusion kinetics and weak electrical conductivity hinder their electrochemical performance in supercapacitors and their energy-conversion ability in direct ethanol fuel cells (DAFCs). Combining MnO/FeO with biomass-based activated carbon (AC), which is conductive, inexpensive, and has a long cycle life, to create MnO/FeO/AC can improve their electrochemical performances for ethanol oxidation and in supercapacitors. Herein, MnO/FeO/AC ternary composites were synthesized a facile method. The physicochemical and electrochemical properties of pure and composite materials were characterized using TGA-DTA, XRD, FTIR, BET, SEM-EDX, TEM, HRTEM, SAED, CV, and EIS. The composite MnO/FeO@8%AC exhibited the highest specific capacitance, with a value of 515.113 F g at 1 A g. Furthermore, in cyclability tests, after 700 cycles at a current density of 1 A g, its charge-storage performance showed an 81.83% capacity retention and a maximum energy density of 27.679 W h kg. Upon integration in a DAFC, MnO/FeO@8%AC electrocatalytic ethanol oxidation was achieved with a maximum power density of 44.41 mW cm, indicating better performance than that of other pure and composite catalysts. Therefore, this work provides a potential candidate for use in efficient energy-storage devices and an effective catalyst electrode for the ethanol oxidation reaction.
MnO和FeO纳米颗粒缓慢的离子扩散动力学和较弱的导电性阻碍了它们在超级电容器中的电化学性能以及在直接乙醇燃料电池(DAFC)中的能量转换能力。将MnO/FeO与具有导电性、价格低廉且循环寿命长的生物质基活性炭(AC)相结合,制备MnO/FeO/AC,可以提高它们对乙醇氧化的电化学性能以及在超级电容器中的性能。在此,通过一种简便的方法合成了MnO/FeO/AC三元复合材料。使用热重-差示热分析(TGA-DTA)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、比表面积分析(BET)、扫描电子显微镜-能谱分析(SEM-EDX)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、选区电子衍射(SAED)、循环伏安法(CV)和电化学阻抗谱(EIS)对纯材料和复合材料的物理化学及电化学性质进行了表征。复合MnO/FeO@8%AC表现出最高的比电容,在1 A g时为515.113 F g。此外,在循环性能测试中,在1 A g的电流密度下经过700次循环后,其电荷存储性能显示容量保持率为81.83%,最大能量密度为27.679 W h kg。将其集成到DAFC中时,MnO/FeO@8%AC实现了对乙醇氧化的电催化,最大功率密度为44.41 mW cm,表明其性能优于其他纯催化剂和复合催化剂。因此,这项工作为高效储能装置提供了一种潜在的候选材料,并为乙醇氧化反应提供了一种有效的催化剂电极。