Gogurla Narendar, Sinha Arun Kumar, Santra Sumita, Manna Santanu, Ray Samit Kumar
Department of Physics, Indian Institute of Technology Kharagpur, 721302, India.
Sci Rep. 2014 Sep 26;4:6483. doi: 10.1038/srep06483.
In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm.
在本研究中,我们报道了通过简单的光化学过程合成的金-氧化锌纳米复合材料在室温下增强紫外光探测以及波长可调谐光诱导的一氧化氮气体传感性能。已发现尺寸小于入射波长的等离子体金-氧化锌纳米结构表现出局部表面等离子体共振(LSPR),这导致强烈的吸收、散射和局部场增强。在335 nm处,金-氧化锌纳米复合材料的光响应相对于对照氧化锌可有效增强80倍。我们还展示了金-氧化锌纳米复合材料在室温下用于波长可调谐气体传感器的应用。与对照氧化锌相比,金-氧化锌纳米复合材料在紫外和可见光区域的传感响应均得到增强。由于金纳米粒子的LSPR效应,在可见光区域观察到灵敏度更高。发现对一氧化氮气体的选择性高于一氧化碳和其他一些挥发性有机化合物(VOCs),金-氧化锌传感器在335 nm处的最低检测限为0.1 ppb。