Suppr超能文献

城市赛车活动中医疗资源使用预测模型的比较。

Comparison of prediction models for use of medical resources at urban auto-racing events.

作者信息

Nable Jose V, Margolis Asa M, Lawner Benjamin J, Hirshon Jon Mark, Perricone Alexander J, Galvagno Samuel M, Lee Debra, Millin Michael G, Bissell Richard A, Alcorta Richard L

出版信息

Prehosp Disaster Med. 2014 Dec;29(6):608-13. doi: 10.1017/S1049023X14001046. Epub 2014 Sep 26.

Abstract

UNLABELLED

INTRODUCTION Predicting the number of patient encounters and transports during mass gatherings can be challenging. The nature of these events necessitates that proper resources are available to meet the needs that arise. Several prediction models to assist event planners in forecasting medical utilization have been proposed in the literature.

HYPOTHESIS/PROBLEM: The objective of this study was to determine the accuracy of the Arbon and Hartman models in predicting the number of patient encounters and transportations from the Baltimore Grand Prix (BGP), held in 2011 and 2012. It was hypothesized that the Arbon method, which utilizes regression model-derived equations to estimate, would be more accurate than the Hartman model, which categorizes events into only three discreet severity types.

METHODS

This retrospective analysis of the BGP utilized data collected from an electronic patient tracker system. The actual number of patients evaluated and transported at the BGP was tabulated and compared to the numbers predicted by the two studied models. Several environmental features including weather, crowd attendance, and presence of alcohol were used in the Arbon and Hartman models.

RESULTS

Approximately 130,000 spectators attended the first event, and approximately 131,000 attended the second. The number of patient encounters per day ranged from 19 to 57 in 2011, and the number of transports from the scene ranged from two to nine. In 2012, the number of patients ranged from 19 to 44 per day, and the number of transports to emergency departments ranged from four to nine. With the exception of one day in 2011, the Arbon model over predicted the number of encounters. For both events, the Hartman model over predicted the number of patient encounters. In regard to hospital transports, the Arbon model under predicted the actual numbers whereas the Hartman model both over predicted and under predicted the number of transports from both events, varying by day.

CONCLUSIONS

These findings call attention to the need for the development of a versatile and accurate model that can more accurately predict the number of patient encounters and transports associated with mass-gathering events so that medical needs can be anticipated and sufficient resources can be provided.

摘要

未标注

引言 在大型活动期间预测患者就诊和转运的数量可能具有挑战性。这些活动的性质要求有适当的资源来满足出现的需求。文献中已经提出了几种预测模型,以协助活动策划者预测医疗资源的使用情况。

假设/问题:本研究的目的是确定Arbon模型和Hartman模型在预测2011年和2012年巴尔的摩大奖赛(BGP)患者就诊和转运数量方面的准确性。研究假设是,利用回归模型推导方程进行估计的Arbon方法比仅将事件分为三种离散严重程度类型的Hartman模型更准确。

方法

对BGP进行的这项回顾性分析利用了从电子患者追踪系统收集的数据。统计了在BGP接受评估和转运的患者实际数量,并与两个研究模型预测的数量进行比较。Arbon模型和Hartman模型使用了包括天气、观众人数和酒精存在情况在内的几个环境特征。

结果

约130,000名观众参加了第一场赛事,约131,000名观众参加了第二场赛事。2011年每天的患者就诊数量在19至57例之间,现场转运数量在2至9例之间。2012年,每天的患者数量在19至44例之间,送往急诊科的转运数量在4至9例之间。除了2011年的一天外,Arbon模型高估了就诊数量。对于这两项赛事,Hartman模型都高估了患者就诊数量。关于医院转运,Arbon模型低估了实际数量,而Hartman模型在两项赛事的转运数量预测上既有高估也有低估,且每天都有所不同。

结论

这些发现提醒人们需要开发一种通用且准确的模型,该模型能够更准确地预测与大型活动相关的患者就诊和转运数量以便能够预见到医疗需求并提供足够的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验