Aviram Ira, Rabinovitch Avinoam, Zaritsky Arieh
Department of Physics, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
Department of Physics, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
J Theor Biol. 2015 Jan 7;364:428-32. doi: 10.1016/j.jtbi.2014.09.020. Epub 2014 Sep 26.
A hybrid mathematical model was devised to obtain optimal values for bacterial doubling time and initial phage/bacteria multiplicity of infection for the purpose of reaching the highest possible phage titers in steady-state exponentially growing cultures. The computational model consists of an initial probabilistic stage, followed by a second one processed by a system of delayed differential equations. The model's approach can be used in any phage/bacteria system for which the relevant parameters have been measured. Results of a specific case, based on the detailed, known information about the interactions between virulent T4 phage and its host bacterium Escherichia coli, display a range of possible such values along a highlighted strip of parameter values in the relevant parameter plane. In addition, times to achieve these maxima and gains in phage concentrations are evaluated.
设计了一种混合数学模型,以获得细菌倍增时间和初始噬菌体/细菌感染复数的最佳值,目的是在稳态指数生长培养物中达到尽可能高的噬菌体滴度。该计算模型由初始概率阶段组成,随后是由延迟微分方程系统处理的第二个阶段。该模型的方法可用于已测量相关参数的任何噬菌体/细菌系统。基于关于烈性T4噬菌体与其宿主细菌大肠杆菌之间相互作用的详细已知信息的一个具体案例的结果,在相关参数平面中沿着突出显示的参数值带展示了一系列可能的此类值。此外,还评估了达到这些最大值的时间以及噬菌体浓度的增加情况。