Suppr超能文献

交叉性视网膜神经节细胞优势是否会导致斜视?内斜视起源的颞侧视网膜——神经解剖学和进化分析。

Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia – a neuroanatomical and evolutionary analysis.

出版信息

Acta Ophthalmol. 2014 Sep;92(6):e419-23. doi: 10.1111/aos.12289.

Abstract

A closer look at the evolution of the eye and the brain provides a possible explanation for both the origin of infantile esotropia and its motor characteristics. In the course of evolution, the eyes have moved from a lateral to a frontal position. Consequently, the monocular visual fields started to overlap resulting in a binocular visual field. In lateral-eyed animals, the retinae project to the contralateral visual cortices only. These projections are also found in binocular mammals and birds with binocular visual fields but in addition there are uncrossed projections from the temporal retinae to the visual cortex. The partial chiasmal decussation and the corpus callosum provide the necessary structure that allows binocular vision to develop. Disruption of normal binocular development causes a loss of binocularity in the primary visual cortex and beyond. Beyond the primary visual cortex, the contralateral eye dominates while the temporal retinal signal appears to lose influence. Loss or absence of binocular vision in infantile esotropia may be caused by inadequate retinotopic matching between the nasal and temporal retinal signals like in albinism with an abnormal or asymmetric chiasmal decussation or agenesis of the corpus callosum. Dominance of the crossing retinal signal might also explain the motor characteristics of infantile esotropia (asymmetric OKN, latent nystagmus, DVD). A normal binocular cortical signal will predominate over the evolutionary older, originally non-binocular, retinal projections to the superior colliculi (CS) and the accessory optic system (AOS). A suppressed temporal retinal signal paves the way for the re-emergence of eye movements driven by one eye, as in lateral-eyed non-binocular animals.

摘要

深入研究眼睛和大脑的进化为婴儿内斜视的起源及其运动特征提供了一个可能的解释。在进化过程中,眼睛从侧面位置移动到了前面的位置。因此,单眼视野开始重叠,形成了双眼视野。在侧眼动物中,视网膜只投射到对侧视觉皮质。这些投射在具有双眼视觉的哺乳动物和鸟类中也有发现,但除此之外,还有来自颞视网膜的未交叉投射到视觉皮质。部分视交叉交叉和胼胝体提供了允许双眼视觉发展的必要结构。正常双眼视觉发育的中断会导致初级视觉皮质及更远处的双眼视功能丧失。在初级视觉皮质之外,对侧眼睛占主导地位,而颞视网膜信号似乎失去了影响。婴儿内斜视中双眼视觉的丧失或缺失可能是由于鼻侧和颞侧视网膜信号之间的视网膜对应不足引起的,就像白化病中异常或不对称的视交叉交叉或胼胝体发育不全一样。交叉视网膜信号的主导地位也可以解释婴儿内斜视的运动特征(不对称的 OKN、潜伏性眼球震颤、DVD)。正常的双眼皮质信号将占主导地位,而进化上较老的、最初非双眼的视网膜投射到上丘(CS)和辅助视觉系统(AOS)。被抑制的颞视网膜信号为一只眼睛驱动的眼球运动的重新出现铺平了道路,就像在侧眼非双眼动物中一样。

相似文献

9
Aberrant visual projections in the Siamese cat.暹罗猫的视觉投射异常。
J Physiol. 1971 Oct;218(1):33-62. doi: 10.1113/jphysiol.1971.sp009603.

本文引用的文献

3
The neural control of fast vs. slow vergence eye movements.快相和慢相眼动的神经控制。
Eur J Neurosci. 2011 Jun;33(11):2147-54. doi: 10.1111/j.1460-9568.2011.07692.x.
6
Ocular findings in pediatric patients with partial agenesis of corpus callosum.胼胝体部分发育不全的儿科患者的眼部表现
J Pediatr Ophthalmol Strabismus. 2010 Jul-Aug;47(4):236-41. doi: 10.3928/01913913-20090918-06.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验