Suppr超能文献

转录因子Brn4的缺失在DFN3型非综合征性耳聋模型中破坏了耳蜗间隙连接斑块。

Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness.

作者信息

Kidokoro Yoshinobu, Karasawa Keiko, Minowa Osamu, Sugitani Yoshinobu, Noda Tetsuo, Ikeda Katsuhisa, Kamiya Kazusaku

机构信息

Juntendo University Faculty of Medicine, Department of Otorhinolaryngology, Tokyo, Japan.

BioResource Center, Institute of Physical and Chemical Research (RIKEN), Tsukuba, Japan.

出版信息

PLoS One. 2014 Sep 26;9(9):e108216. doi: 10.1371/journal.pone.0108216. eCollection 2014.

Abstract

Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.

摘要

Brn4基因编码一种POU转录因子,它是导致DFN3(一种X染色体连锁的非综合征型听力损失)的基因。Brn4基因缺陷的小鼠内淋巴电位(EP)较低、存在听力损失,且螺旋韧带纤维细胞有超微结构改变,然而Brn4基因缺陷导致低内淋巴电位的分子病理学机制仍不清楚。分别编码缝隙连接蛋白连接蛋白26(Cx26)和连接蛋白30(Cx30)的Gjb2和Gjb6基因突变与遗传性感音神经性耳聋有关,这两种基因在耳蜗纤维细胞和非感觉上皮细胞(即耳蜗支持细胞)中表达,以维持适当的内淋巴电位。据推测,耳蜗中的缝隙连接提供了一个细胞间通道,通过该通道钾离子被转运以维持感觉毛细胞兴奋所需的高水平内淋巴电位。在这里,我们通过共聚焦显微镜和三维图形重建分析了不同阶段Brn4基因缺陷小鼠耳蜗支持细胞中缝隙连接斑的形成。对照小鼠的缝隙连接主要由Cx26和Cx30组成,沿着与相邻细胞的细胞间连接位点形成线性斑块。这些斑块形成了正常内沟细胞和边界细胞的五边形或六边形轮廓。然而,Brn4基因缺陷小鼠的缝隙连接斑没有显示出正常的线性结构,而是在细胞间连接位点周围形成小斑点。与同窝对照相比,Brn4基因缺陷小鼠的缝隙连接长度明显缩短,Cx26和Cx30水平显著降低。因此,Brn4突变影响了耳蜗支持细胞细胞边界处缝隙连接蛋白的组装和定位,这表明Brn4在很大程度上有助于维持耳蜗中适当的内淋巴电位,类似于与连接蛋白相关的耳聋。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48d0/4178122/0b57dae4b30c/pone.0108216.g001.jpg

相似文献

1
Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness.
PLoS One. 2014 Sep 26;9(9):e108216. doi: 10.1371/journal.pone.0108216. eCollection 2014.
3
Assembly of the cochlear gap junction macromolecular complex requires connexin 26.
J Clin Invest. 2014 Apr;124(4):1598-607. doi: 10.1172/JCI67621. Epub 2014 Mar 3.
4
Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions.
Biochem Biophys Res Commun. 2012 Jan 6;417(1):245-50. doi: 10.1016/j.bbrc.2011.11.093. Epub 2011 Nov 28.
5
Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms.
Mech Dev. 2019 Feb;155:8-14. doi: 10.1016/j.mod.2018.10.001. Epub 2018 Oct 5.
7
Degradation and modification of cochlear gap junction proteins in the early development of age-related hearing loss.
Exp Mol Med. 2020 Jan;52(1):166-175. doi: 10.1038/s12276-020-0377-1. Epub 2020 Jan 27.
8
Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts.
Am J Physiol Cell Physiol. 2005 Mar;288(3):C613-23. doi: 10.1152/ajpcell.00341.2004.
9
Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice.
PLoS One. 2008;3(12):e4088. doi: 10.1371/journal.pone.0004088. Epub 2008 Dec 31.
10
Unique expression of connexins in the human cochlea.
Hear Res. 2009 Apr;250(1-2):55-62. doi: 10.1016/j.heares.2009.01.010. Epub 2009 Feb 6.

引用本文的文献

1
Research progress on incomplete partition type 3 inner ear malformation.
Eur Arch Otorhinolaryngol. 2024 Aug;281(8):3943-3948. doi: 10.1007/s00405-024-08555-7. Epub 2024 Mar 18.
2
Clinical and Molecular Aspects Associated with Defects in the Transcription Factor POU3F4: A Review.
Biomedicines. 2023 Jun 12;11(6):1695. doi: 10.3390/biomedicines11061695.
4
Research progress of the transcription factor Brn4 (Review).
Mol Med Rep. 2021 Mar;23(3). doi: 10.3892/mmr.2020.11818. Epub 2021 Jan 5.
5
On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament.
Front Neurol. 2020 Oct 27;11:580639. doi: 10.3389/fneur.2020.580639. eCollection 2020.
6
Pou3f4-expressing otic mesenchyme cells promote spiral ganglion neuron survival in the postnatal mouse cochlea.
J Comp Neurol. 2020 Aug;528(12):1967-1985. doi: 10.1002/cne.24867. Epub 2020 Feb 7.
7
Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus).
PLoS One. 2017 Oct 26;12(10):e0186667. doi: 10.1371/journal.pone.0186667. eCollection 2017.
8
Inner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors.
Front Pharmacol. 2015 Jan 27;6:2. doi: 10.3389/fphar.2015.00002. eCollection 2015.

本文引用的文献

1
Connexins modulate autophagosome biogenesis.
Nat Cell Biol. 2014 May;16(5):401-14. doi: 10.1038/ncb2934. Epub 2014 Apr 6.
2
Assembly of the cochlear gap junction macromolecular complex requires connexin 26.
J Clin Invest. 2014 Apr;124(4):1598-607. doi: 10.1172/JCI67621. Epub 2014 Mar 3.
3
Degradation of connexins and gap junctions.
FEBS Lett. 2014 Apr 17;588(8):1221-9. doi: 10.1016/j.febslet.2014.01.031. Epub 2014 Jan 30.
5
Pou3f4 deficiency causes defects in otic fibrocytes and stria vascularis by different mechanisms.
Biochem Biophys Res Commun. 2011 Jan 7;404(1):528-33. doi: 10.1016/j.bbrc.2010.12.019. Epub 2010 Dec 7.
7
Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes.
Development. 2008 May;135(9):1725-34. doi: 10.1242/dev.014043. Epub 2008 Mar 19.
8
Deafness and cochlear fibrocyte alterations in mice deficient for the inner ear protein otospiralin.
Mol Cell Biol. 2005 Jan;25(2):847-53. doi: 10.1128/MCB.25.2.847-853.2005.
9
Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice.
Biochem Biophys Res Commun. 2003 Jul 25;307(2):362-8. doi: 10.1016/s0006-291x(03)01166-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验