Suppr超能文献

Carbohydrate metabolism in HT29 colon cancer cells cultured in a glucose free medium supplemented with inosine.

作者信息

Gauthier T, Denis-Pouxviel C, Murat J C

机构信息

Institut de Physiologie, INSERM U 317, Université Paul Sabatier, Toulouse, France.

出版信息

Int J Biochem. 1989;21(2):191-6. doi: 10.1016/0020-711x(89)90108-0.

Abstract
  1. Carbohydrate metabolism was studied in HT29 human colon cancer cells cultured in a glucose free medium supplemented with 2.8 mM inosine (HT29ino cells) in comparison with standard HT29 cells grown in the permanent presence of glucose (HT29Glc + cells) and with HT29Glc- cells which are adapted to grow permanently without glucose. 2. Inosine allows the standard cells to grow when glucose is lacking but surprisingly stops the growth of HT29Glc- cells. 3-mercaptopicolinate, an inhibitor of PEP-carboxykinase, does not hinder HT29ino cells to grow, which shows that gluconeogenesis from aspartate or pyruvate is not essential. It suggests that enough carbohydrate is supplied by the ribose moiety of inosine. 3. While standard HT29Glc + cells are highly glycolytic, it is not the case of HT29ino or HT29Glc- cells when glucose is given for few hours. When glucose is present for 24 hr or more, glycolytic rate increases in HT29ino cells and glycogen accumulates. 4. It is found that the pattern of enzymes activities related to carbohydrate metabolism in HT29ino cells is closer to that of HT29Glc + cells rather than to that of HT29Glc- cells. However, phosphofructokinase-1 activity, measured with saturating concentration of Fru-2,6-diP, is significantly lower in HT29ino cells. 5. Binding rate of hexokinase to mitochondria is similar in the three cell-lines. However, in HT29Glc- cells, bound hexokinase easily utilizes ATP generated by the mitochondria. By contrast, in HT29Glc+ and HT29ino cells, bound hexokinase is much more active with exogenous ATP, suggesting a functional defect in the mitochondria from these two latter cells.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验