Calmettes Guillaume, Ribalet Bernard, John Scott, Korge Paavo, Ping Peipei, Weiss James N
UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
J Mol Cell Cardiol. 2015 Jan;78:107-15. doi: 10.1016/j.yjmcc.2014.09.020. Epub 2014 Sep 26.
As mediators of the first enzymatic step in glucose metabolism, hexokinases (HKs) orchestrate a variety of catabolic and anabolic uses of glucose, regulate antioxidant power by generating NADPH for glutathione reduction, and modulate cell death processes by directly interacting with the voltage-dependent anion channel (VDAC), a regulatory component of the mitochondrial permeability transition pore (mPTP). Here we summarize the current state-of-knowledge about HKs and their role in protecting the heart from ischemia/reperfusion (I/R) injury, reviewing: 1) the properties of different HK isoforms and how their function is regulated by their subcellular localization; 2) how HKs modulate glucose metabolism and energy production during I/R; 3) the molecular mechanisms by which HKs influence mPTP opening and cellular injury during I/R; and 4) how different metabolic and HK profiles correlate with susceptibility to I/R injury and cardioprotective efficacy in cancer cells, neonatal hearts, and normal, hypertrophied and failing adult hearts, and how these difference may guide novel therapeutic strategies to limit I/R injury in the heart. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
作为葡萄糖代谢第一步酶促反应的介质,己糖激酶(HKs)协调葡萄糖的各种分解代谢和合成代谢用途,通过生成用于还原谷胱甘肽的NADPH来调节抗氧化能力,并通过与电压依赖性阴离子通道(VDAC)直接相互作用来调节细胞死亡过程,VDAC是线粒体通透性转换孔(mPTP)的一个调节成分。在此,我们总结了目前关于HKs及其在保护心脏免受缺血/再灌注(I/R)损伤方面作用的知识现状,内容包括:1)不同HK同工型的特性以及它们的功能如何受亚细胞定位的调节;2)HKs在I/R期间如何调节葡萄糖代谢和能量产生;3)HKs影响I/R期间mPTP开放和细胞损伤的分子机制;4)不同的代谢和HK谱如何与癌细胞、新生心脏以及正常、肥厚和衰竭的成年心脏对I/R损伤的易感性和心脏保护功效相关,以及这些差异如何指导限制心脏I/R损伤的新治疗策略。本文是名为“线粒体:从基础线粒体生物学至心血管疾病”特刊的一部分。