Suppr超能文献

通过任务级联进行面部动作单元事件检测

Facial Action Unit Event Detection by Cascade of Tasks.

作者信息

Ding Xiaoyu, Chu Wen-Sheng, De la Torre Fernando, Cohn Jeffery F, Wang Qiao

机构信息

School of Information Science and Engineering, Southeast University, Nanjing, China.

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Proc IEEE Int Conf Comput Vis. 2013;2013:2400-2407. doi: 10.1109/ICCV.2013.298.

Abstract

Automatic facial Action Unit (AU) detection from video is a long-standing problem in facial expression analysis. AU detection is typically posed as a classification problem between frames or segments of positive examples and negative ones, where existing work emphasizes the use of different features or classifiers. In this paper, we propose a method called Cascade of Tasks (CoT) that combines the use of different tasks (i.e., frame, segment and transition) for AU event detection. We train CoT in a sequential manner embracing diversity, which ensures robustness and generalization to unseen data. In addition to conventional frame-based metrics that evaluate frames independently, we propose a new event-based metric to evaluate detection performance at event-level. We show how the CoT method consistently outperforms state-of-the-art approaches in both frame-based and event-based metrics, across three public datasets that differ in complexity: CK+, FERA and RU-FACS.

摘要

从视频中自动检测面部动作单元(AU)是面部表情分析中一个长期存在的问题。AU检测通常被视为正例和负例的帧或片段之间的分类问题,现有工作强调使用不同的特征或分类器。在本文中,我们提出了一种名为任务级联(CoT)的方法,该方法结合使用不同的任务(即帧、片段和过渡)来进行AU事件检测。我们以包含多样性的顺序方式训练CoT,这确保了对未见数据的鲁棒性和泛化能力。除了独立评估帧的传统基于帧的指标外,我们还提出了一种新的基于事件的指标来评估事件级别的检测性能。我们展示了CoT方法如何在三个复杂度不同的公共数据集(CK+、FERA和RU-FACS)上,在基于帧和基于事件的指标方面始终优于现有方法。

相似文献

1
Facial Action Unit Event Detection by Cascade of Tasks.
Proc IEEE Int Conf Comput Vis. 2013;2013:2400-2407. doi: 10.1109/ICCV.2013.298.
2
Selective Transfer Machine for Personalized Facial Action Unit Detection.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013;2013:3515-3522. doi: 10.1109/CVPR.2013.451.
3
Dynamic Cascades with Bidirectional Bootstrapping for Action Unit Detection in Spontaneous Facial Behavior.
IEEE Trans Affect Comput. 2011 Apr-Jun;2(2):79-91. doi: 10.1109/T-AFFC.2011.10.
4
Contrastive Learning of Person-Independent Representations for Facial Action Unit Detection.
IEEE Trans Image Process. 2023;32:3212-3225. doi: 10.1109/TIP.2023.3279978. Epub 2023 Jun 7.
5
Selective Transfer Machine for Personalized Facial Expression Analysis.
IEEE Trans Pattern Anal Mach Intell. 2017 Mar;39(3):529-545. doi: 10.1109/TPAMI.2016.2547397. Epub 2016 Mar 28.
6
Unsupervised Facial Action Representation Learning by Temporal Prediction.
Front Neurorobot. 2022 Mar 16;16:851847. doi: 10.3389/fnbot.2022.851847. eCollection 2022.
7
Joint Patch and Multi-label Learning for Facial Action Unit Detection.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015 Jun;2015:2207-2216. doi: 10.1109/CVPR.2015.7298833.
8
Confidence Preserving Machine for Facial Action Unit Detection.
IEEE Trans Image Process. 2016 Oct;25(10):4753-4767. doi: 10.1109/TIP.2016.2594486. Epub 2016 Jul 27.
9
Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.
IEEE Trans Image Process. 2016 Dec;25(12):5727-5742. doi: 10.1109/TIP.2016.2615288. Epub 2016 Oct 5.
10
IntraFace.
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163082.

引用本文的文献

1
Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Jun;2018:2090-2099. doi: 10.1109/CVPR.2018.00223. Epub 2018 Dec 17.
2
Learning Facial Action Units with Spatiotemporal Cues and Multi-label Sampling.
Image Vis Comput. 2019 Jan;81:1-14. doi: 10.1016/j.imavis.2018.10.002. Epub 2018 Oct 28.
3
A Brief Review of Facial Emotion Recognition Based on Visual Information.
Sensors (Basel). 2018 Jan 30;18(2):401. doi: 10.3390/s18020401.
4
A Branch-and-Bound Framework for Unsupervised Common Event Discovery.
Int J Comput Vis. 2017 Jul;123(3):372-391. doi: 10.1007/s11263-017-0989-7. Epub 2017 Feb 9.
5
Selective Transfer Machine for Personalized Facial Expression Analysis.
IEEE Trans Pattern Anal Mach Intell. 2017 Mar;39(3):529-545. doi: 10.1109/TPAMI.2016.2547397. Epub 2016 Mar 28.
6
Confidence Preserving Machine for Facial Action Unit Detection.
IEEE Trans Image Process. 2016 Oct;25(10):4753-4767. doi: 10.1109/TIP.2016.2594486. Epub 2016 Jul 27.
7
Joint Patch and Multi-label Learning for Facial Action Unit Detection.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015 Jun;2015:2207-2216. doi: 10.1109/CVPR.2015.7298833.
8
IntraFace.
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163082.

本文引用的文献

1
Dynamic Cascades with Bidirectional Bootstrapping for Action Unit Detection in Spontaneous Facial Behavior.
IEEE Trans Affect Comput. 2011 Apr-Jun;2(2):79-91. doi: 10.1109/T-AFFC.2011.10.
2
Learning Multiscale Active Facial Patches for Expression Analysis.
IEEE Trans Cybern. 2015 Aug;45(8):1499-510. doi: 10.1109/TCYB.2014.2354351. Epub 2014 Sep 29.
3
Selective Transfer Machine for Personalized Facial Action Unit Detection.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013;2013:3515-3522. doi: 10.1109/CVPR.2013.451.
5
The effects of alcohol on the emotional displays of Whites in interracial groups.
Emotion. 2013 Jun;13(3):468-477. doi: 10.1037/a0030934. Epub 2013 Jan 28.
6
Meta-Analysis of the First Facial Expression Recognition Challenge.
IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):966-79. doi: 10.1109/TSMCB.2012.2200675. Epub 2012 Jun 20.
7
Facial Action Recognition Combining Heterogeneous Features via Multikernel Learning.
IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):993-1005. doi: 10.1109/TSMCB.2012.2193567. Epub 2012 May 18.
8
Multilayer Architectures for Facial Action Unit Recognition.
IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1027-38. doi: 10.1109/TSMCB.2012.2195170. Epub 2012 May 11.
9
Fully automatic recognition of the temporal phases of facial actions.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):28-43. doi: 10.1109/TSMCB.2011.2163710. Epub 2011 Sep 15.
10
A unified probabilistic framework for spontaneous facial action modeling and understanding.
IEEE Trans Pattern Anal Mach Intell. 2010 Feb;32(2):258-73. doi: 10.1109/TPAMI.2008.293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验