Suppr超能文献

通过可扩展的弱监督聚类从网络图像中学习面部动作单元

Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering.

作者信息

Zhao Kaili, Chu Wen-Sheng, Martinez Aleix M

机构信息

School of Comm. and Info. Engineering, Beijing University of Posts and Telecom.

Robotics Institute, Carnegie Mellon University.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Jun;2018:2090-2099. doi: 10.1109/CVPR.2018.00223. Epub 2018 Dec 17.

Abstract

We present a scalable weakly supervised clustering approach to learn facial action units (AUs) from large, freely available web images. Unlike most existing methods (e.g., CNNs) that rely on fully annotated data, our method exploits web images with inaccurate annotations. Specifically, we derive a weakly-supervised spectral algorithm that learns an embedding space to couple image appearance and semantics. The algorithm has efficient gradient update, and scales up to large quantities of images with a stochastic extension. With the learned embedding space, we adopt rank-order clustering to identify groups of visually and semantically similar images, and re-annotate these groups for training AU classifiers. Evaluation on the 1 millon EmotioNet dataset demonstrates the effectiveness of our approach: (1) our learned annotations reach on average 91.3% agreement with human annotations on 7 common AUs, (2) classifiers trained with re-annotated images perform comparably to, sometimes even better than, its supervised CNN-based counterpart, and (3) our method offers intuitive outlier/noise pruning instead of forcing one annotation to every image. Code is available.

摘要

我们提出了一种可扩展的弱监督聚类方法,用于从大量免费的网络图像中学习面部动作单元(AU)。与大多数现有方法(如卷积神经网络)依赖完全标注的数据不同,我们的方法利用标注不准确的网络图像。具体而言,我们推导了一种弱监督谱算法,该算法学习一个嵌入空间以结合图像外观和语义。该算法具有高效的梯度更新,并通过随机扩展可扩展到大量图像。利用学习到的嵌入空间,我们采用排序聚类来识别视觉和语义上相似的图像组,并对这些组重新标注以训练AU分类器。在100万张EmotioNet数据集上的评估证明了我们方法的有效性:(1)我们学习到的标注与人类对7个常见AU的标注平均达成91.3%的一致性;(2)用重新标注的图像训练的分类器与基于监督卷积神经网络的同类方法性能相当,有时甚至更好;(3)我们的方法提供直观的离群值/噪声修剪,而不是强制为每张图像分配一个标注。代码可用。

相似文献

1
Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering.通过可扩展的弱监督聚类从网络图像中学习面部动作单元
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Jun;2018:2090-2099. doi: 10.1109/CVPR.2018.00223. Epub 2018 Dec 17.
2
Weakly Supervised Facial Action Unit Recognition With Domain Knowledge.基于领域知识的弱监督人脸动作单元识别
IEEE Trans Cybern. 2018 Nov;48(11):3265-3276. doi: 10.1109/TCYB.2018.2868194. Epub 2018 Sep 26.
5
7
Weakly Supervised Adversarial Learning for 3D Human Pose Estimation from Point Clouds.基于点云的弱监督对抗学习三维人体姿态估计
IEEE Trans Vis Comput Graph. 2020 May;26(5):1851-1859. doi: 10.1109/TVCG.2020.2973076. Epub 2020 Feb 13.

引用本文的文献

1
Synthetic Expressions are Better Than Real for Learning to Detect Facial Actions.对于学习检测面部动作而言,合成表情比真实表情更好。
IEEE Winter Conf Appl Comput Vis. 2021 Jan;2021:1247-1256. doi: 10.1109/wacv48630.2021.00129. Epub 2021 Jun 14.
2
Unsupervised Facial Action Representation Learning by Temporal Prediction.通过时间预测进行无监督面部动作表示学习
Front Neurorobot. 2022 Mar 16;16:851847. doi: 10.3389/fnbot.2022.851847. eCollection 2022.
7
Automatic Micro-Expression Analysis: Open Challenges.自动微表情分析:开放性挑战。
Front Psychol. 2019 Aug 7;10:1833. doi: 10.3389/fpsyg.2019.01833. eCollection 2019.

本文引用的文献

1
Computational Models of Face Perception.面部感知的计算模型
Curr Dir Psychol Sci. 2017 Jun;26(3):263-269. doi: 10.1177/0963721417698535. Epub 2017 Jun 14.
2
Clustering Millions of Faces by Identity.基于身份的数百万人脸聚类。
IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):289-303. doi: 10.1109/TPAMI.2017.2679100. Epub 2017 Mar 7.
4
Confidence Preserving Machine for Facial Action Unit Detection.用于面部动作单元检测的置信度保持机器
IEEE Trans Image Process. 2016 Oct;25(10):4753-4767. doi: 10.1109/TIP.2016.2594486. Epub 2016 Jul 27.
5
Joint Patch and Multi-label Learning for Facial Action Unit Detection.用于面部动作单元检测的联合补丁与多标签学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015 Jun;2015:2207-2216. doi: 10.1109/CVPR.2015.7298833.
8
Learning Multiscale Active Facial Patches for Expression Analysis.学习多尺度主动面部斑块进行表情分析。
IEEE Trans Cybern. 2015 Aug;45(8):1499-510. doi: 10.1109/TCYB.2014.2354351. Epub 2014 Sep 29.
9
Facial Action Unit Event Detection by Cascade of Tasks.通过任务级联进行面部动作单元事件检测
Proc IEEE Int Conf Comput Vis. 2013;2013:2400-2407. doi: 10.1109/ICCV.2013.298.
10
Selective Transfer Machine for Personalized Facial Action Unit Detection.用于个性化面部动作单元检测的选择性转移机器
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013;2013:3515-3522. doi: 10.1109/CVPR.2013.451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验