Zhao Kaili, Chu Wen-Sheng, Martinez Aleix M
School of Comm. and Info. Engineering, Beijing University of Posts and Telecom.
Robotics Institute, Carnegie Mellon University.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Jun;2018:2090-2099. doi: 10.1109/CVPR.2018.00223. Epub 2018 Dec 17.
We present a scalable weakly supervised clustering approach to learn facial action units (AUs) from large, freely available web images. Unlike most existing methods (e.g., CNNs) that rely on fully annotated data, our method exploits web images with inaccurate annotations. Specifically, we derive a weakly-supervised spectral algorithm that learns an embedding space to couple image appearance and semantics. The algorithm has efficient gradient update, and scales up to large quantities of images with a stochastic extension. With the learned embedding space, we adopt rank-order clustering to identify groups of visually and semantically similar images, and re-annotate these groups for training AU classifiers. Evaluation on the 1 millon EmotioNet dataset demonstrates the effectiveness of our approach: (1) our learned annotations reach on average 91.3% agreement with human annotations on 7 common AUs, (2) classifiers trained with re-annotated images perform comparably to, sometimes even better than, its supervised CNN-based counterpart, and (3) our method offers intuitive outlier/noise pruning instead of forcing one annotation to every image. Code is available.
我们提出了一种可扩展的弱监督聚类方法,用于从大量免费的网络图像中学习面部动作单元(AU)。与大多数现有方法(如卷积神经网络)依赖完全标注的数据不同,我们的方法利用标注不准确的网络图像。具体而言,我们推导了一种弱监督谱算法,该算法学习一个嵌入空间以结合图像外观和语义。该算法具有高效的梯度更新,并通过随机扩展可扩展到大量图像。利用学习到的嵌入空间,我们采用排序聚类来识别视觉和语义上相似的图像组,并对这些组重新标注以训练AU分类器。在100万张EmotioNet数据集上的评估证明了我们方法的有效性:(1)我们学习到的标注与人类对7个常见AU的标注平均达成91.3%的一致性;(2)用重新标注的图像训练的分类器与基于监督卷积神经网络的同类方法性能相当,有时甚至更好;(3)我们的方法提供直观的离群值/噪声修剪,而不是强制为每张图像分配一个标注。代码可用。