Campbell Fiona, Thokala Praveen, Uttley Lesley C, Sutton Anthea, Sutton Alex J, Al-Mohammad Abdallah, Thomas Steven M
School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK.
Department of Health Sciences, University of Leicester, Leicester, UK.
Health Technol Assess. 2014 Sep;18(59):1-120. doi: 10.3310/hta18590.
Cardiac magnetic resonance imaging (CMR) is increasingly used to assess patients for myocardial viability prior to revascularisation. This is important to ensure that only those likely to benefit are subjected to the risk of revascularisation.
To assess current evidence on the accuracy and cost-effectiveness of CMR to test patients prior to revascularisation in ischaemic cardiomyopathy; to develop an economic model to assess cost-effectiveness for different imaging strategies; and to identify areas for further primary research.
Databases searched were: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations Initial searches were conducted in March 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to March 2011); Bioscience Information Service (BIOSIS) Previews via Web of Science (1969 to March 2011); EMBASE via Ovid (1974 to March 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to March 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library 1998 to March 2011; Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to March 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to March 2011); Health Technology Assessment Database via The Cochrane Library (1989 to March 2011); and the Science Citation Index via Web of Science (1900 to March 2011). Additional searches were conducted from October to November 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to November 2011); BIOSIS Previews via Web of Science (1969 to October 2011); EMBASE via Ovid (1974 to November 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to November 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library (1998 to November 2011); Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to November 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to November 2011); Health Technology Assessment Database via The Cochrane Library (1989 to November 2011); and the Science Citation Index via Web of Science (1900 to October 2011). Electronic databases were searched March-November 2011.
The systematic review selected studies that assessed the clinical effectiveness and cost-effectiveness of CMR to establish the role of CMR in viability assessment compared with other imaging techniques: stress echocardiography, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Studies had to have an appropriate reference standard and contain accuracy data or sufficient details so that accuracy data could be calculated. Data were extracted by two reviewers and discrepancies resolved by discussion. Quality of studies was assessed using the QUADAS II tool (University of Bristol, Bristol, UK). A rigorous diagnostic accuracy systematic review assessed clinical and cost-effectiveness of CMR in viability assessment. A health economic model estimated costs and quality-adjusted life-years (QALYs) accrued by diagnostic pathways for identifying patients with viable myocardium in ischaemic cardiomyopathy with a view to revascularisation. The pathways involved CMR, stress echocardiography, SPECT, PET alone or in combination. Strategies of no testing and revascularisation were included to determine the most cost-effective strategy.
Twenty-four studies met the inclusion criteria. All were prospective. Participant numbers ranged from 8 to 52. The mean left ventricular ejection fraction in studies reporting this outcome was 24-62%. CMR approaches included stress CMR and late gadolinium-enhanced cardiovascular magnetic resonance imaging (CE CMR). Recovery following revascularisation was the reference standard. Twelve studies assessed diagnostic accuracy of stress CMR and 14 studies assessed CE CMR. A bivariate regression model was used to calculate the sensitivity and specificity of CMR. Summary sensitivity and specificity for stress CMR was 82.2% [95% confidence interval (CI) 73.2% to 88.7%] and 87.1% (95% CI 80.4% to 91.7%) and for CE CMR was 95.5% (95% CI 94.1% to 96.7%) and 53% (95% CI 40.4% to 65.2%) respectively. The sensitivity and specificity of PET, SPECT and stress echocardiography were calculated using data from 10 studies and systematic reviews. The sensitivity of PET was 94.7% (95% CI 90.3% to 97.2%), of SPECT was 85.1% (95% CI 78.1% to 90.2%) and of stress echocardiography was 77.6% (95% CI 70.7% to 83.3%). The specificity of PET was 68.8% (95% CI 50% to 82.9%), of SPECT was 62.1% (95% CI 52.7% to 70.7%) and of stress echocardiography was 69.6% (95% CI 62.4% to 75.9%). All currently used diagnostic strategies were cost-effective compared with no testing at current National Institute for Health and Care Excellence thresholds. If the annual mortality rates for non-viable patients were assumed to be higher for revascularised patients, then testing with CE CMR was most cost-effective at a threshold of £20,000/QALY. The proportion of model runs in which each strategy was most cost-effective, at a threshold of £20,000/QALY, was 40% for CE CMR, 42% for PET and 16.5% for revascularising everyone. The expected value of perfect information at £20,000/QALY was £620 per patient. If all patients (viable or not) gained benefit from revascularisation, then it was most cost-effective to revascularise all patients.
Definitions and techniques assessing viability were highly variable, making data extraction and comparisons difficult. Lack of evidence meant assumptions were made in the model leading to uncertainty; differing scenarios were generated around key assumptions.
All the diagnostic pathways are a cost-effective use of NHS resources. Given the uncertainty in the mortality rates, the cost-effectiveness analysis was performed using a set of scenarios. The cost-effectiveness analyses suggest that CE CMR and revascularising everyone were the optimal strategies. Future research should look at implementation costs for this type of imaging service, provide guidance on consistent reporting of diagnostic testing data for viability assessment, and focus on the impact of revascularisation or best medical therapy in this group of high-risk patients.
The National Institute of Health Technology Assessment programme.
心脏磁共振成像(CMR)越来越多地用于评估患者在血运重建术前的心肌活力。这对于确保只有那些可能受益的患者承担血运重建风险非常重要。
评估目前关于CMR在缺血性心肌病血运重建术前检测患者的准确性和成本效益的证据;建立一个经济模型来评估不同成像策略的成本效益;并确定进一步进行原发性研究的领域。
检索的数据库包括:MEDLINE(包括MEDLINE在研及其他未索引的引文)。初始检索于2011年3月在以下数据库进行,时间范围如下:通过Ovid检索的MEDLINE(包括MEDLINE在研及其他未索引的引文,1946年至2011年3月);通过Web of Science检索的生物科学信息服务(BIOSIS)预评数据库(1969年至2011年3月);通过Ovid检索的EMBASE(1974年至2011年3月);通过Cochrane图书馆检索的Cochrane系统评价数据库(1996年至2011年3月);通过Cochrane图书馆检索的Cochrane对照试验中心注册库(1998年至2011年3月);通过Cochrane图书馆检索的效果评价文摘数据库(1994年至2011年3月);通过Cochrane图书馆检索的英国国家卫生与临床优化研究所(NHS)经济评价数据库(1968年至2011年3月);通过Cochrane图书馆检索的卫生技术评估数据库(1989年至2011年3月);以及通过Web of Science检索的科学引文索引(1900年至2011年3月)。201年10月至11月在以下数据库进行了额外检索,时间范围如下:通过Ovid检索的MEDLINE(包括MEDLINE在研及其他未索引的引文,1946年至2011年11月);通过Web of Science检索的BIOSIS预评数据库(1969年至2011年10月);通过Ovid检索的EMBASE(1974年至2011年11月);通过Cochrane图书馆检索的Cochrane系统评价数据库(1996年至2011年11月);通过Cochrane图书馆检索的Cochrane对照试验中心注册库(1998年至2011年11月);通过Cochrane图书馆检索的效果评价文摘数据库(1994年至2011年11月);通过Cochrane图书馆检索的NHS经济评价数据库(1968年至2011年11月);通过Cochrane图书馆检索的卫生技术评估数据库(1989年至2011年11月);以及通过Web of Science检索的科学引文索引(1900年至2011年10月)。2011年3月至11月检索了电子数据库。
系统综述选择了评估CMR临床有效性和成本效益的研究,以确定CMR在与其他成像技术(负荷超声心动图、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET))相比的活力评估中的作用。研究必须有适当的参考标准,并包含准确性数据或足够的细节,以便能够计算准确性数据。由两名评审员提取数据,并通过讨论解决差异。使用QUADAS II工具(英国布里斯托尔大学)评估研究质量。一项严格的诊断准确性系统综述评估了CMR在活力评估中的临床和成本效益。一个卫生经济模型估计了通过诊断途径识别缺血性心肌病中有存活心肌的患者以进行血运重建所产生的成本和质量调整生命年(QALY)。这些途径包括单独或联合使用CMR、负荷超声心动图、SPECT、PET。纳入了不进行检测和血运重建的策略,以确定最具成本效益的策略。
24项研究符合纳入标准。所有研究均为前瞻性研究。参与者人数从8人到52人不等。报告该结果的研究中左心室射血分数的平均值为24%至62%。CMR方法包括负荷CMR和延迟钆增强心血管磁共振成像(CE CMR)。血运重建后的恢复情况为参考标准。12项研究评估了负荷CMR的诊断准确性,14项研究评估了CE CMR的诊断准确性。使用双变量回归模型计算CMR灵敏度和特异性。负荷CMR的汇总灵敏度和特异性分别为82.2%[95%置信区间(CI)7至88.7%]和87.1%(95%CI 80.4%至91.7%),CE CMR的汇总灵敏度和特异性分别为95.5%(95%CI 94.1%至96.7%)和53%(95%CI 40.4%至65.2%)。使用来自10项研究和系统综述的数据计算PET、SPECT和负荷超声心动图的灵敏度和特异性。PET的灵敏度为94.7%(95%CI 90.3%至97.2%),SPECT的灵敏度为85.1%(95%CI 78.1%至90.2%),负荷超声心动图的灵敏度为77.6%(95%CI 70.7%至83.3%)。PET的特异性为68.8%(95%CI 50%至82.9%),SPECT的特异性为62.1%(95%CI 52.7%至70.7%),负荷超声心动图的特异性为69.6%(95%CI 62.4%至75.9%)。与目前英国国家卫生与临床优化研究所阈值下不进行检测相比,所有目前使用的诊断策略都具有成本效益。如果假设血运重建患者中非存活患者的年死亡率更高,那么在阈值为20,000英镑/QALY时,使用CE CMR进行检测最具成本效益。在阈值为20,000英镑/QALY时,每种策略最具成本效益的模型运行比例为:CE CMR为40%,PET为42%,对所有患者进行血运重建为16.5%。在阈值为20,000英镑/QALY时,完美信息的期望值为每位患者620英镑。如果所有患者(无论是否存活)都能从血运重建中获益,那么对所有患者进行血运重建最具成本效益。
评估活力的定义和技术高度可变,使得数据提取和比较困难。缺乏证据意味着在模型中进行了假设,导致不确定性;围绕关键假设产生了不同的情景。
所有诊断途径都是对英国国家卫生服务(NHS)资源的成本效益利用。鉴于死亡率的不确定性,使用一组情景进行了成本效益分析。成本效益分析表明,CE CMR和对所有患者进行血运重建是最佳策略。未来的研究应着眼于此类成像服务的实施成本,为活力评估的诊断检测数据的一致报告提供指导,并关注血运重建或最佳药物治疗对这组高危患者的影响。
英国国家卫生技术评估计划。