Sade Nir, Shatil-Cohen Arava, Attia Ziv, Maurel Christophe, Boursiac Yann, Kelly Gilor, Granot David, Yaaran Adi, Lerner Stephen, Moshelion Menachem
Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.).
Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
Plant Physiol. 2014 Nov;166(3):1609-20. doi: 10.1104/pp.114.248633. Epub 2014 Sep 29.
Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed.
总体而言,我们对水通道蛋白(AQPs)在全株水分调节中的细胞作用的理解,尤其是在叶片的血管外径向水分导度(K(leaf))方面,仍然相当有限。我们假设维管束鞘(BS)细胞中的水通道蛋白调节K(leaf)。为了验证这一假设,使用组成型表达或特异性靶向BS的人工微小RNA使水通道蛋白基因沉默。微小RNA序列被设计用于靶向来自质膜内在蛋白1(PIP1)亚家族的所有五个水通道蛋白基因。我们的结果表明,组成型沉默PIP1(35S启动子)的植株中,PIP1转录本和蛋白水平降低,叶肉和BS的渗透水导率(P(f))、CO2的叶肉导度、光合作用、K(leaf)、蒸腾作用和地上部生物量均降低。仅在BS中沉默PIP1亚家族的植株(稻草人:微小RNA植株)表现出叶肉和BS的Pf降低以及K(leaf)降低,但上述其他参数未降低,最终结果是地上部生物量增加。我们排除了稻草人启动子在叶肉中具有活性的可能性。因此,稻草人:微小RNA叶肉表现出P(f)降低但CO2叶肉导度未降低这一事实表明,BS-叶肉水分连续体充当了前馈控制信号。本文讨论了水通道蛋白在正常和水分受限条件下控制叶片水分状况的水分信号通路层级中的作用。