Chaumont François, Tyerman Stephen D
Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium.
Plant Physiol. 2014 Apr;164(4):1600-18. doi: 10.1104/pp.113.233791. Epub 2014 Jan 21.
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.
植物的生长和发育依赖于对水分运动的严格调控。水通道蛋白促进了水分跨细胞膜的扩散,为植物提供了快速且可逆地改变水渗透性的途径。这是通过改变膜中水通道蛋白的密度和活性来实现的,包括翻译后修饰以及作用于其运输和门控的蛋白质相互作用。在整个器官水平上,水通道蛋白会在关键的“守门人”细胞层改变水分传导率和梯度,从而影响整株植物的水分流动和植物水势。通过这种方式,它们可能与气孔调节协同作用,以确定等水/非等水的程度。分子、生理和生物物理方法已经证明,根和叶的水力传导率变化可由水通道蛋白来解释,但这必须与解剖学因素相结合。本综述整合了这些数据,并强调了水通道蛋白在调节植物水分关系中所起的核心作用。