Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima, Okayama 700-8530, Japan.
J Am Chem Soc. 2014 Oct 29;136(43):15270-9. doi: 10.1021/ja507665a. Epub 2014 Oct 16.
We prepared bifunctional Mg(II) porphyrin catalysts 1 for the solvent-free synthesis of cyclic carbonates from epoxides and CO2. The activities of 1d, 1h, and 1i, which have Br(-), Cl(-), and I(-) counteranions, respectively, increased in the order 1i < 1h < 1d. Catalysts 1d and 1j-m, which bear four tetraalkylammonium bromide groups with different alkyl chain lengths, showed comparable but slightly different activities. Based on the excellent catalyst 1d, we synthesized Mg(II) porphyrin 1o with eight tetraalkylammonium bromide groups, which showed even higher catalytic activity (turnover number, 138,000; turnover frequency, 19,000 h(-1)). The catalytic mechanism was studied by using 1d. The yields were nearly constant at initial CO2 pressures in the 1-6 MPa range, suggesting that CO2 was not involved in the rate-determining step in this pressure range. No reaction proceeded in supercritical CO2, probably because the epoxide (into which the catalyst dissolved) dissolved in and was diluted by the supercritical CO2. Experiments with (18)O-labeled CO2 and D-labeled epoxide suggested that the catalytic cycle involved initial nucleophilic attack of Br(-) on the less hindered side of the epoxide to generate an oxyanion, which underwent CO2 insertion to afford a CO2 adduct; subsequent intramolecular ring closure formed the cyclic carbonate and regenerated the catalyst. Density functional theory calculations gave results consistent with the experimental results, revealing that the quaternary ammonium cation underwent conformational changes that stabilized various anionic species generated during the catalytic cycle. The high activity of 1d and 1o was due to the cooperative action of the Mg(II) and Br(-) and a conformational change (induced-fit) of the quaternary ammonium cation.
我们制备了双功能镁(II)卟啉催化剂 1,用于无溶剂条件下由环氧化物和 CO2 合成环状碳酸酯。具有 Br(-)、Cl(-)和 I(-)抗衡阴离子的 1d、1h 和 1i 的活性依次增加,1i < 1h < 1d。带有四个不同链长的四烷基溴化铵基团的催化剂 1d 和 1j-m 表现出相似但略有不同的活性。基于优异的催化剂 1d,我们合成了具有八个四烷基溴化铵基团的镁(II)卟啉 1o,其表现出更高的催化活性(周转数为 138000,周转频率为 19000 h(-1))。通过使用 1d 研究了催化机理。在初始 CO2 压力为 1-6 MPa 的范围内,产率几乎保持不变,表明在该压力范围内 CO2 不参与速率决定步骤。在超临界 CO2 中没有反应发生,可能是因为环氧化物(催化剂溶解在其中)溶解在超临界 CO2 中并被其稀释。用 (18)O 标记的 CO2 和 D 标记的环氧化物进行的实验表明,催化循环涉及 Br(-)对环氧化物的非位阻较小侧的初始亲核攻击,生成氧阴离子,该氧阴离子经历 CO2 插入,生成 CO2 加合物;随后,分子内环化形成环状碳酸酯并再生催化剂。密度泛函理论计算给出的结果与实验结果一致,表明季铵阳离子经历了构象变化,稳定了催化循环中生成的各种阴离子物种。1d 和 1o 的高活性归因于 Mg(II)和 Br(-)的协同作用以及季铵阳离子的构象变化(诱导契合)。