Bardgett Megan E, Sharpe Amanda L, Toney Glenn M
Department of Physiology and
Department of Pharmaceutical Sciences, University of the Incarnate Word, San Antonio, Texas.
Am J Physiol Endocrinol Metab. 2014 Nov 15;307(10):E944-53. doi: 10.1152/ajpendo.00291.2014. Epub 2014 Sep 30.
Energy expenditure is determined by metabolic rate and diet-induced thermogenesis. Normally, energy expenditure increases due to neural mechanisms that sense plasma levels of ingested nutrients/hormones and reflexively increase sympathetic nerve activity (SNA). Here, we investigated neural mechanisms of glucose-driven sympathetic activation by determining contributions of neuronal activity in the hypothalamic paraventricular nucleus (PVN) and activation of corticotropin-releasing factor (CRF) receptors in the rostral ventrolateral medulla (RVLM). Glucose was infused intravenously (150 mg/kg, 10 min) in male rats to raise plasma glucose concentration to a physiological postprandial level. In conscious rats, glucose infusion activated CRF-containing PVN neurons and TH-containing RVLM neurons, as indexed by c-Fos immunofluorescence. In α-chloralose/urethane-anesthetized rats, glucose infusion increased lumbar and splanchnic SNA, which was nearly prevented by prior RVLM injection of the CRF receptor antagonist astressin (10 pmol/50 nl). This cannot be attributed to a nonspecific effect, as sciatic afferent stimulation increased SNA and ABP equivalently in astressin- and aCSF-injected rats. Glucose-stimulated sympathoexcitation was largely reversed during inhibition of PVN neuronal activity with the GABA-A receptor agonist muscimol (100 pmol/50 nl). The effects of astressin to prevent glucose-stimulated sympathetic activation appear to be specific to interruption of PVN drive to RVLM because RVLM injection of astressin prior to glucose infusion effectively prevented SNA from rising and prevented any fall of SNA in response to acute PVN inhibition with muscimol. These findings suggest that activation of SNA, and thus energy expenditure, by glucose is initiated by activation of CRF receptors in RVLM by descending inputs from PVN.
能量消耗由代谢率和饮食诱导产热决定。正常情况下,能量消耗会因感知摄入营养素/激素的血浆水平并反射性增加交感神经活动(SNA)的神经机制而增加。在此,我们通过确定下丘脑室旁核(PVN)神经元活动的贡献以及延髓头端腹外侧区(RVLM)促肾上腺皮质激素释放因子(CRF)受体的激活情况,研究了葡萄糖驱动的交感神经激活的神经机制。将葡萄糖静脉注射(150 mg/kg,10分钟)给雄性大鼠,使血浆葡萄糖浓度升高至生理餐后水平。在清醒大鼠中,以c-Fos免疫荧光为指标,葡萄糖输注激活了含CRF的PVN神经元和含酪氨酸羟化酶(TH)的RVLM神经元。在α-氯醛糖/乌拉坦麻醉的大鼠中,葡萄糖输注增加了腰段和内脏的SNA,而预先在RVLM注射CRF受体拮抗剂阿斯特辛(10 pmol/50 nl)几乎可阻止这种增加。这不能归因于非特异性效应,因为坐骨神经传入刺激在注射阿斯特辛和人工脑脊液(aCSF)的大鼠中同等程度地增加了SNA和动脉血压(ABP)。在用GABA-A受体激动剂蝇蕈醇(100 pmol/50 nl)抑制PVN神经元活动期间,葡萄糖刺激的交感神经兴奋在很大程度上被逆转。阿斯特辛阻止葡萄糖刺激的交感神经激活的作用似乎特定于中断PVN对RVLM的驱动,因为在葡萄糖输注前在RVLM注射阿斯特辛有效地阻止了SNA升高,并阻止了在蝇蕈醇急性抑制PVN时SNA的任何下降。这些发现表明,葡萄糖对SNA的激活以及由此导致的能量消耗是由PVN下行输入激活RVLM中的CRF受体引发的。