Suppr超能文献

Attenuated Fractional Wave Equations With Anisotropy.

作者信息

Meerschaert Mark M, McGough Robert J

机构信息

Department of Statistics and Probability, Michigan State University , East Lansing, MI 48824 e-mail:

Department of Electrical and Computer Engineering, Michigan State University , East Lansing, MI 48824 e-mail:

出版信息

J Vib Acoust. 2014 Oct;136(5):0510041-510045. doi: 10.1115/1.4025940. Epub 2014 Jul 25.

Abstract

This paper develops new fractional calculus models for wave propagation. These models permit a different attenuation index in each coordinate to fully capture the anisotropic nature of wave propagation in complex media. Analytical expressions that describe power law attenuation and anomalous dispersion in each direction are derived for these fractional calculus models.

摘要

相似文献

1
Attenuated Fractional Wave Equations With Anisotropy.
J Vib Acoust. 2014 Oct;136(5):0510041-510045. doi: 10.1115/1.4025940. Epub 2014 Jul 25.
2
FRACTIONAL WAVE EQUATIONS WITH ATTENUATION.
Fract Calc Appl Anal. 2013 Mar 1;16(1):262-272. doi: 10.2478/s13540-013-0016-9.
5
Stochastic solution to a time-fractional attenuated wave equation.
Nonlinear Dyn. 2012 Oct;70(2):1273-1281. doi: 10.1007/s11071-012-0532-x.
6
Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
Ultrasound Med Biol. 2014 Apr;40(4):695-703. doi: 10.1016/j.ultrasmedbio.2013.09.033. Epub 2014 Jan 13.
7
Transient propagation in media with classical or power-law loss.
J Acoust Soc Am. 2004 Dec;116(6):3294-303. doi: 10.1121/1.1823271.
8
Acoustic wave and eikonal equations in a transformed metric space for various types of anisotropy.
Heliyon. 2017 Mar 22;3(3):e00260. doi: 10.1016/j.heliyon.2017.e00260. eCollection 2017 Mar.
10
Linking multiple relaxation, power-law attenuation, and fractional wave equations.
J Acoust Soc Am. 2011 Nov;130(5):3038-45. doi: 10.1121/1.3641457.

引用本文的文献

1
STOCHASTIC SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS.
Nonlinear Dyn. 2015 Jun 1;80(4):1685-1695. doi: 10.1007/s11071-014-1299-z.

本文引用的文献

3
Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption.
J Acoust Soc Am. 2008 Dec;124(6):4047-58. doi: 10.1121/1.3003077.
4
Analytical time-domain Green's functions for power-law media.
J Acoust Soc Am. 2008 Nov;124(5):2861-72. doi: 10.1121/1.2977669.
5
Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation.
J Magn Reson. 2008 Feb;190(2):255-70. doi: 10.1016/j.jmr.2007.11.007. Epub 2007 Nov 13.
6
Anomalous negative dispersion in bone can result from the interference of fast and slow waves.
J Acoust Soc Am. 2006 Nov;120(5 Pt 1):EL55-61. doi: 10.1121/1.2357187.
7
The dependence of ultrasonic properties on orientation in human vertebral bone.
Phys Med Biol. 1994 Jun;39(6):1013-24. doi: 10.1088/0031-9155/39/6/007.
9
A stratified model to predict dispersion in trabecular bone.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jul;48(4):1079-83. doi: 10.1109/58.935726.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验