Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium.
Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium ; Department of Neurology, Hopital Universitaire des Enfants reine Fabiola, Université Libre de Bruxelles Bruxelles, Belgium.
Front Syst Neurosci. 2014 Sep 18;8:169. doi: 10.3389/fnsys.2014.00169. eCollection 2014.
Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR). We analyzed event related potentials (ERP), the event related spectral perturbation (ERSP) and the inter-trial coherence (ITC) from high-density EEG recording during video display onset (-200-600 ms) and the steady state visual evoked potentials (SSVEP) inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images); and Uncoordinated (pseudo-randomly mixed images). We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.
生物运动观察已被认为会根据观察到的运动学产生感觉运动激活的动态变化。人体运动的空间运动关系的物理合理性可能在人体运动识别的自上而下处理中起主要作用。在这里,我们研究了观察人体步态时头皮激活的时间过程,以便在未来使用虚拟现实 (VR) 进行集成脑机接口时进行提取和使用。我们分析了事件相关电位 (ERP)、事件相关光谱微扰 (ERSP) 和试验间相干性 (ITC),从高密度 EEG 记录中在视频显示开始时 (-200-600ms) 进行分析,以及在三种条件下的人行走 3D 动画视频中的稳态视觉诱发电位 (SSVEP):正常;上下颠倒(反转图像);和不协调(伪随机混合图像)。我们发现,在上下颠倒的情况下,早期视觉诱发反应 P120 减少。在不协调的情况下,N170 和 P300b 振幅减小。在上下颠倒和不协调的情况下,我们发现α功率和θ相位锁定减少。关于伽马振荡,在上下颠倒的动画中功率增加,在不协调的动画中功率降低。还描述了类似于 SSVEP 的响应,其在大约 10Hz 处振荡,表明仅在正常情况下,即在上下颠倒条件下,在脚跟撞击事件后 300ms 增强了振荡模式。我们的结果与大多数以前的点光显示研究一致,进一步支持虚拟现实在神经反馈应用中的可能用途。