Suppr超能文献

用于指导口服药物产品开发的临时计算机模拟生物药剂学分类系统(BCS)

Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development.

作者信息

Wolk Omri, Agbaria Riad, Dahan Arik

机构信息

Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

Drug Des Devel Ther. 2014 Sep 24;8:1563-75. doi: 10.2147/DDDT.S68909. eCollection 2014.

Abstract

The main objective of this work was to investigate in-silico predictions of physicochemical properties, in order to guide oral drug development by provisional biopharmaceutics classification system (BCS). Four in-silico methods were used to estimate LogP: group contribution (CLogP) using two different software programs, atom contribution (ALogP), and element contribution (KLogP). The correlations (r(2)) of CLogP, ALogP and KLogP versus measured LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported intestinal permeability in humans was correct for 64.3%-72.4% of the 29 drugs on the dataset, and for 81.82%-90.91% of the 22 drugs that are passively absorbed using the different in-silico algorithms. Similar permeability classification was obtained with the various in-silico methods. The in-silico calculations, along with experimental melting points, were then incorporated into a thermodynamic equation for solubility estimations that largely matched the reference solubility values. It was revealed that the effect of melting point on the solubility is minor compared to the partition coefficient, and an average melting point (162.7 °C) could replace the experimental values, with similar results. The in-silico methods classified 20.76% (± 3.07%) as Class 1, 41.51% (± 3.32%) as Class 2, 30.49% (± 4.47%) as Class 3, and 6.27% (± 4.39%) as Class 4. In conclusion, in-silico methods can be used for BCS classification of drugs in early development, from merely their molecular formula and without foreknowledge of their chemical structure, which will allow for the improved selection, engineering, and developability of candidates. These in-silico methods could enhance success rates, reduce costs, and accelerate oral drug products development.

摘要

这项工作的主要目的是研究物理化学性质的计算机模拟预测,以便通过临时生物药剂学分类系统(BCS)指导口服药物开发。使用了四种计算机模拟方法来估算LogP:使用两个不同软件程序的基团贡献法(CLogP)、原子贡献法(ALogP)和元素贡献法(KLogP)。CLogP、ALogP和KLogP与实测LogP数据的相关性(r²)分别为0.97、0.82和0.71。对于数据集中的29种药物,根据所报道的人体肠道通透性进行的药物分类,正确度为64.3%-72.4%;对于22种被动吸收的药物,使用不同的计算机模拟算法进行分类的正确度为81.82%-90.91%。使用各种计算机模拟方法获得了相似的通透性分类结果。然后,将计算机模拟计算结果与实验熔点一起纳入一个溶解度估算的热力学方程,该方程与参考溶解度值基本相符。结果表明,与分配系数相比,熔点对溶解度的影响较小,平均熔点(162.7℃)可以替代实验值,结果相似。计算机模拟方法将20.76%(±3.07%)分类为1类,41.51%(±3.32%)分类为2类,30.49%(±4.47%)分类为3类,6.27%(±4.39%)分类为4类。总之,计算机模拟方法可用于药物早期开发阶段的BCS分类,仅根据其分子式,无需预先了解其化学结构,这将有助于改进候选药物的选择、设计和可开发性。这些计算机模拟方法可以提高成功率、降低成本并加速口服药物产品的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd9a/4181551/f9cc27b1c970/dddt-8-1563Fig1.jpg

相似文献

1
Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development.
Drug Des Devel Ther. 2014 Sep 24;8:1563-75. doi: 10.2147/DDDT.S68909. eCollection 2014.
2
Purely in silico BCS classification: science based quality standards for the world's drugs.
Mol Pharm. 2013 Nov 4;10(11):4378-90. doi: 10.1021/mp400485k. Epub 2013 Oct 23.
5
Comparing multilabel classification methods for provisional biopharmaceutics class prediction.
Mol Pharm. 2015 Jan 5;12(1):87-102. doi: 10.1021/mp500457t. Epub 2014 Dec 1.
8
The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.
Eur J Pharm Sci. 2014 Jun 16;57:152-63. doi: 10.1016/j.ejps.2014.01.009. Epub 2014 Jan 28.
10
Is the full potential of the biopharmaceutics classification system reached?
Eur J Pharm Sci. 2014 Jun 16;57:224-31. doi: 10.1016/j.ejps.2013.09.010. Epub 2013 Sep 25.

引用本文的文献

2
In Vitro-In Silico Approach in the Development of Clopidogrel Solid Dispersion Formulations.
Bioengineering (Basel). 2025 Mar 30;12(4):357. doi: 10.3390/bioengineering12040357.
3
Prodrug Approach as a Strategy to Enhance Drug Permeability.
Pharmaceuticals (Basel). 2025 Feb 21;18(3):297. doi: 10.3390/ph18030297.
4
Amorphous Solid Forms of Ranolazine and Tryptophan and Their Relaxation to Metastable Polymorphs.
Cryst Growth Des. 2023 Aug 18;23(9):6679-6691. doi: 10.1021/acs.cgd.3c00565. eCollection 2023 Sep 6.
6
The Science of Selecting Excipients for Dermal Self-Emulsifying Drug Delivery Systems.
Pharmaceutics. 2023 Apr 20;15(4):1293. doi: 10.3390/pharmaceutics15041293.
7
Network pharmacology analysis reveals neuroprotective effects of the Qin-Zhi-Zhu-Dan Formula in Alzheimer's disease.
Front Neurosci. 2022 Oct 20;16:943400. doi: 10.3389/fnins.2022.943400. eCollection 2022.

本文引用的文献

1
The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.
Mol Pharm. 2014 May 5;11(5):1707-14. doi: 10.1021/mp500152y. Epub 2014 Apr 15.
2
Human in vivo regional intestinal permeability: importance for pharmaceutical drug development.
Mol Pharm. 2014 Jan 6;11(1):12-23. doi: 10.1021/mp4003392. Epub 2013 Nov 22.
3
Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo.
Eur J Pharm Sci. 2014 Jun 16;57:292-9. doi: 10.1016/j.ejps.2013.10.012. Epub 2013 Nov 1.
4
Purely in silico BCS classification: science based quality standards for the world's drugs.
Mol Pharm. 2013 Nov 4;10(11):4378-90. doi: 10.1021/mp400485k. Epub 2013 Oct 23.
5
Regional intestinal drug permeation: biopharmaceutics and drug development.
Eur J Pharm Sci. 2014 Jun 16;57:333-41. doi: 10.1016/j.ejps.2013.08.025. Epub 2013 Aug 27.
8
The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):1293-9. doi: 10.1016/j.ejpb.2013.05.018. Epub 2013 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验