Suppr超能文献

比较用于临时生物药剂学分类预测的多标签分类方法。

Comparing multilabel classification methods for provisional biopharmaceutics class prediction.

作者信息

Newby Danielle, Freitas Alex A, Ghafourian Taravat

机构信息

Medway School of Pharmacy, Universities of Kent and Greenwich , Chatham, Kent, ME4 4TB, U.K.

出版信息

Mol Pharm. 2015 Jan 5;12(1):87-102. doi: 10.1021/mp500457t. Epub 2014 Dec 1.

Abstract

The biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time. This paper compares two multilabel methods, binary relevance and classifier chain, for provisional BCS class prediction. Large data sets of permeability and solubility of drug and drug-like compounds were obtained from the literature and were used to build models using decision trees. The separate permeability and solubility models were validated, and a BCS validation set of 127 compounds where both permeability and solubility were known was used to compare the two aforementioned multilabel classification methods for provisional BCS class prediction. Overall, the results indicate that the classifier chain method, which takes into account label interactions, performed better compared to the binary relevance method. This work offers a comparison of multilabel methods and shows the potential of the classifier chain multilabel method for improved biological property predictions for use in drug discovery and development.

摘要

生物药剂学分类系统(BCS)现已得到广泛认可,并用于速释口服剂型的研发和生物豁免。BCS分类的预测可通过多标签分类法进行。与单标签分类不同,多标签分类法可同时预测多个类别标签。本文比较了两种多标签方法,即二元相关性和分类器链,用于临时BCS分类预测。从文献中获取了大量药物及类药物化合物的渗透性和溶解性数据集,并使用决策树构建模型。对单独的渗透性和溶解性模型进行了验证,并使用一个包含127种化合物的BCS验证集(这些化合物的渗透性和溶解性均已知)来比较上述两种多标签分类方法用于临时BCS分类预测的效果。总体而言,结果表明,考虑标签相互作用的分类器链方法比二元相关性方法表现更好。这项工作对多标签方法进行了比较,并展示了分类器链多标签方法在改善药物发现和开发中生物性质预测方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验