Suppr超能文献

利用微波和介电固体宏观样品研究无序光子带隙材料的光子特性。

Using microwave and macroscopic samples of dielectric solids to study the photonic properties of disordered photonic bandgap materials.

作者信息

Hashemizad Seyed Reza, Tsitrin Sam, Yadak Polin, He Yingquan, Cuneo Daniel, Williamson Eric Paul, Liner Devin, Man Weining

机构信息

Department of Physics and Astronomy, San Francisco State University.

Department of Physics and Astronomy, San Francisco State University;

出版信息

J Vis Exp. 2014 Sep 26(91):51614. doi: 10.3791/51614.

Abstract

Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.

摘要

最近,无序光子材料已被提议作为周期性晶体的替代物,用于形成完整的光子带隙(PBG)。在本文中,我们将描述使用微波构建和表征宏观无序光子结构的方法。微波波段为构建和测试光子带隙介质提供了最方便的实验样品尺寸。易于操作的介电晶格组件在预印塑料模板上构建各种二维结构时提供了更大的灵活性。一旦构建完成,这些结构可以通过点缺陷和线缺陷快速修改,以制作自由形式的波导和滤波器。测试使用广泛可用的矢量网络分析仪和一对微波喇叭天线进行。由于电磁场的尺度不变性,我们在微波区域获得的结果可以直接应用于红外和光学区域。我们的方法简单,但为光与无序物质相互作用的本质提供了令人兴奋的新见解。我们的代表性成果包括首次通过实验证明在二维(2D)超均匀无序介电结构中存在完整的各向同性光子带隙。此外,我们还通过实验证明了这种新型光子结构能够通过任意形状的自由形式波导引导电磁波(EM)。

相似文献

2
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15886-91. doi: 10.1073/pnas.1307879110. Epub 2013 Sep 16.
3
Conformal surface plasmons propagating on ultrathin and flexible films.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):40-5. doi: 10.1073/pnas.1210417110. Epub 2012 Dec 17.
4
Stealthy and hyperuniform isotropic photonic band gap structure in 3D.
PNAS Nexus. 2024 Sep 6;3(9):pgae383. doi: 10.1093/pnasnexus/pgae383. eCollection 2024 Sep.
5
Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.
Opt Express. 2013 Aug 26;21(17):19972-81. doi: 10.1364/OE.21.019972.
6
Waveguide coupler in three-dimensional photonic crystal.
Opt Express. 2008 Apr 14;16(8):5681-8. doi: 10.1364/oe.16.005681.
7
Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers.
Opt Express. 2008 Aug 18;16(17):13005-15. doi: 10.1364/oe.16.013005.
8
Terahertz pulse transmission in plastic photonic crystal fibres.
Phys Med Biol. 2002 Nov 7;47(21):3765-9. doi: 10.1088/0031-9155/47/21/314.

本文引用的文献

1
Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.
Opt Express. 2013 Aug 26;21(17):19972-81. doi: 10.1364/OE.21.019972.
2
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15886-91. doi: 10.1073/pnas.1307879110. Epub 2013 Sep 16.
3
Photon management in two-dimensional disordered media.
Nat Mater. 2012 Dec;11(12):1017-22. doi: 10.1038/nmat3442. Epub 2012 Oct 7.
4
Designer disordered materials with large, complete photonic band gaps.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20658-63. doi: 10.1073/pnas.0907744106. Epub 2009 Nov 16.
5
Sensitive molecular binding assay using a photonic crystal structure in total internal reflection.
Opt Express. 2008 Aug 4;16(16):11741-9. doi: 10.1364/oe.16.011741.
6
Experimental measurement of the photonic properties of icosahedral quasicrystals.
Nature. 2005 Aug 18;436(7053):993-6. doi: 10.1038/nature03977.
7
Local density fluctuations, hyperuniformity, and order metrics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041113. doi: 10.1103/PhysRevE.68.041113. Epub 2003 Oct 29.
8
Diffractionless flow of light in all-optical microchips.
Phys Rev Lett. 2003 Mar 28;90(12):123901. doi: 10.1103/PhysRevLett.90.123901. Epub 2003 Mar 24.
9
Trapping and emission of photons by a single defect in a photonic bandgap structure.
Nature. 2000 Oct 5;407(6804):608-10. doi: 10.1038/35036532.
10
Photonic band structure: The face-centered-cubic case.
Phys Rev Lett. 1989 Oct 30;63(18):1950-1953. doi: 10.1103/PhysRevLett.63.1950.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验