Suppr超能文献

在超薄、柔性膜上传播的共形表面等离激元。

Conformal surface plasmons propagating on ultrathin and flexible films.

机构信息

State Key Laboratory of Millimetre Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):40-5. doi: 10.1073/pnas.1210417110. Epub 2012 Dec 17.

Abstract

Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs.

摘要

表面等离激元(SPPs)是沿着金属和电介质之间的界面传播的局域表面电磁波。由于其固有的亚波长限制,SPPs 很有潜力成为建立在二维金属表面上的一种光子电路的构建模块;然而,SPPs 很难在曲面上进行灵活的、适应性强的控制,从而制造出先进的功能器件。在这里,我们提出了共形表面等离子体(CSPs)的概念,这是一种能够在超薄、灵活的薄膜上传播的表面等离子体波,可以在从微波到中红外频率的宽频带范围内远距离传播。我们在厚度比工作波长小 600 倍的纸状介电薄膜上实现了微波频段的这些 CSPs 的实验,这些柔性的纸状薄膜可以弯曲、折叠,甚至扭曲以控制 CSPs 的流动。

相似文献

1
Conformal surface plasmons propagating on ultrathin and flexible films.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):40-5. doi: 10.1073/pnas.1210417110. Epub 2012 Dec 17.
2
3
Terahertz surface plasmon polaritons on periodically corrugated metal surfaces.
Opt Express. 2008 Mar 3;16(5):3326-33. doi: 10.1364/oe.16.003326.
4
Optical properties of metal-dielectric-metal microcavities in the THz frequency range.
Opt Express. 2010 Jun 21;18(13):13886-907. doi: 10.1364/OE.18.013886.
8
Coupling dielectric waveguide modes to surface plasmon polaritons.
Opt Express. 2008 Jul 7;16(14):10455-64. doi: 10.1364/oe.16.010455.
10
Surface plasmon polariton analogue to Young's double-slit experiment.
Nat Nanotechnol. 2007 Jul;2(7):426-9. doi: 10.1038/nnano.2007.185. Epub 2007 Jul 1.

引用本文的文献

1
A plasmonic meta-rotary travelling-wave oscillator with ultrahigh phase accuracy and figure of merit.
Light Sci Appl. 2025 Aug 21;14(1):284. doi: 10.1038/s41377-025-01966-z.
2
Wideband end-fire antenna based on modulated grooved surface plasmon polaritons.
Sci Rep. 2025 Jul 11;15(1):25144. doi: 10.1038/s41598-025-10667-x.
4
Stepped waveguide metamaterials as low-loss effective replica of surface plasmon polaritons.
Nanophotonics. 2023 Mar 1;12(7):1285-1293. doi: 10.1515/nanoph-2022-0810. eCollection 2023 Apr.
5
Electrical addressing of exceptional points in compact plasmonic structures.
Nanophotonics. 2023 Apr 19;12(11):2029-2039. doi: 10.1515/nanoph-2023-0125. eCollection 2023 May.
6
Waveguide effective plasmonics with structure dispersion.
Nanophotonics. 2021 Dec 8;11(9):1659-1676. doi: 10.1515/nanoph-2021-0613. eCollection 2022 Apr.
7
Editorial on special issue: "Metamaterials and plasmonics in Asia".
Nanophotonics. 2022 Apr 26;11(9):1655-1658. doi: 10.1515/nanoph-2022-0226. eCollection 2022 Apr.
8
Reconfigurable Mach-Zehnder interferometer for dynamic modulations of spoof surface plasmon polaritons.
Nanophotonics. 2021 Dec 1;11(9):1913-1921. doi: 10.1515/nanoph-2021-0539. eCollection 2022 Apr.
9
Delaying an Electromagnetic Pulse with a Reflective High-Integration Meta-Platform.
Nanomaterials (Basel). 2024 Sep 3;14(17):1438. doi: 10.3390/nano14171438.
10
Terahertz spoof plasmonic neural network for diffractive information recognition and processing.
Nat Commun. 2024 Aug 6;15(1):6686. doi: 10.1038/s41467-024-51210-2.

本文引用的文献

1
Photonic design principles for ultrahigh-efficiency photovoltaics.
Nat Mater. 2012 Feb 21;11(3):174-7. doi: 10.1038/nmat3263.
2
Flexible plasmonics on unconventional and nonplanar substrates.
Adv Mater. 2011 Oct 11;23(38):4422-30. doi: 10.1002/adma.201102430. Epub 2011 Aug 24.
3
Surface-plasmon holography with white-light illumination.
Science. 2011 Apr 8;332(6026):218-20. doi: 10.1126/science.1201045.
4
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5169-73. doi: 10.1073/pnas.1014963108. Epub 2011 Mar 14.
5
Highly strained compliant optical metamaterials with large frequency tunability.
Nano Lett. 2010 Oct 13;10(10):4222-7. doi: 10.1021/nl102684x.
6
Designer spoof surface plasmon structures collimate terahertz laser beams.
Nat Mater. 2010 Sep;9(9):730-5. doi: 10.1038/nmat2822. Epub 2010 Aug 8.
7
Observation of plasmarons in quasi-freestanding doped graphene.
Science. 2010 May 21;328(5981):999-1002. doi: 10.1126/science.1186489.
8
Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
Nat Mater. 2010 Jun;9(6):511-7. doi: 10.1038/nmat2745. Epub 2010 Apr 18.
9
Materials and mechanics for stretchable electronics.
Science. 2010 Mar 26;327(5973):1603-7. doi: 10.1126/science.1182383.
10
Domino plasmons for subwavelength terahertz circuitry.
Opt Express. 2010 Jan 18;18(2):754-64. doi: 10.1364/OE.18.000754.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验