Suppr超能文献

由噬菌体186的强效转录激活因子CII介导的启动子激活。

Promoter activation by CII, a potent transcriptional activator from bacteriophage 186.

作者信息

Murchland Iain, Ahlgren-Berg Alexandra, Priest David G, Dodd Ian B, Shearwin Keith E

机构信息

Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.

Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.

出版信息

J Biol Chem. 2014 Nov 14;289(46):32094-32108. doi: 10.1074/jbc.M114.608026. Epub 2014 Oct 6.

Abstract

The lysogeny promoting protein CII from bacteriophage 186 is a potent transcriptional activator, capable of mediating at least a 400-fold increase in transcription over basal activity. Despite being functionally similar to its counterpart in phage λ, it shows no homology at the level of protein sequence and does not belong to any known family of transcriptional activators. It also has the unusual property of binding DNA half-sites that are separated by 20 base pairs, center to center. Here we investigate the structural and functional properties of CII using a combination of genetics, in vitro assays, and mutational analysis. We find that 186 CII possesses two functional domains, with an independent activation epitope in each. 186 CII owes its potent activity to activation mechanisms that are dependent on both the σ(70) and α C-terminal domain (αCTD) components of RNA polymerase, contacting different functional domains. We also present evidence that like λ CII, 186 CII is proteolytically degraded in vivo, but unlike λ CII, 186 CII proteolysis results in a specific, transcriptionally inactive, degradation product with altered self-association properties.

摘要

来自噬菌体186的溶原促进蛋白CII是一种有效的转录激活因子,能够介导转录活性比基础活性至少增加400倍。尽管它在功能上与其在噬菌体λ中的对应物相似,但在蛋白质序列水平上没有同源性,也不属于任何已知的转录激活因子家族。它还具有结合中心距为20个碱基对的DNA半位点的特殊性质。在这里,我们结合遗传学、体外实验和突变分析来研究CII的结构和功能特性。我们发现186 CII具有两个功能结构域,每个结构域都有一个独立的激活表位。186 CII的强大活性归因于依赖于RNA聚合酶的σ(70)和α C末端结构域(αCTD)成分的激活机制,它们与不同的功能结构域接触。我们还提供证据表明,与λ CII一样,186 CII在体内会被蛋白水解降解,但与λ CII不同的是,186 CII的蛋白水解会产生一种具有改变的自缔合特性的特定的、转录无活性的降解产物。

相似文献

1
Promoter activation by CII, a potent transcriptional activator from bacteriophage 186.
J Biol Chem. 2014 Nov 14;289(46):32094-32108. doi: 10.1074/jbc.M114.608026. Epub 2014 Oct 6.
4
Crystal structure of bacteriophage lambda cII and its DNA complex.
Mol Cell. 2005 Jul 22;19(2):259-69. doi: 10.1016/j.molcel.2005.06.006.
6
The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14964-9. doi: 10.1073/pnas.222172499. Epub 2002 Oct 23.
8
A cII-dependent promoter is located within the Q gene of bacteriophage lambda.
Proc Natl Acad Sci U S A. 1985 May;82(10):3134-8. doi: 10.1073/pnas.82.10.3134.
10
Kinetic analysis of mutations affecting the cII activation site at the PRE promoter of bacteriophage lambda.
Proc Natl Acad Sci U S A. 1984 Oct;81(20):6432-6. doi: 10.1073/pnas.81.20.6432.

引用本文的文献

1
Phylogenetic Relationships and Evolution of the Genus (186-Type) Bacteriophages.
Viruses. 2024 May 8;16(5):748. doi: 10.3390/v16050748.
2
Analysis of Infection Time Courses Shows CII Levels Determine the Frequency of Lysogeny in Phage 186.
Pharmaceuticals (Basel). 2021 Sep 29;14(10):998. doi: 10.3390/ph14100998.
3
Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186.
Nucleic Acids Res. 2020 Dec 2;48(21):12030-12041. doi: 10.1093/nar/gkaa1065.
4
RNA polymerase pausing at a protein roadblock can enhance transcriptional interference by promoter occlusion.
FEBS Lett. 2019 May;593(9):903-917. doi: 10.1002/1873-3468.13365. Epub 2019 Mar 29.
5
Bacteriophage P2.
Bacteriophage. 2016 Feb 18;6(1):e1145782. doi: 10.1080/21597081.2016.1145782. eCollection 2016 Jan-Mar.
6
Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.
PLoS One. 2015 Jul 29;10(7):e0133873. doi: 10.1371/journal.pone.0133873. eCollection 2015.

本文引用的文献

1
Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2922-7. doi: 10.1073/pnas.1221322110. Epub 2013 Feb 4.
2
Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR.
Nucleic Acids Res. 2011 May;39(9):3695-709. doi: 10.1093/nar/gkq1336. Epub 2011 Jan 17.
3
ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.
Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
4
Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance.
Nucleic Acids Res. 2010 Sep;38(17):5634-47. doi: 10.1093/nar/gkq222. Epub 2010 May 13.
5
The HADDOCK web server for data-driven biomolecular docking.
Nat Protoc. 2010 May;5(5):883-97. doi: 10.1038/nprot.2010.32. Epub 2010 Apr 15.
6
Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter.
Mol Cell. 2009 Jun 12;34(5):545-55. doi: 10.1016/j.molcel.2009.04.018.
7
Determination of cell fate selection during phage lambda infection.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20705-10. doi: 10.1073/pnas.0808831105. Epub 2008 Dec 19.
8
The structural basis of cooperative regulation at an alternate genetic switch.
Mol Cell. 2006 Mar 3;21(5):605-15. doi: 10.1016/j.molcel.2006.01.019.
9
Functional alignment of regulatory networks: a study of temperate phages.
PLoS Comput Biol. 2005 Dec;1(7):e74. doi: 10.1371/journal.pcbi.0010074. Epub 2005 Dec 23.
10
Crystal structure of bacteriophage lambda cII and its DNA complex.
Mol Cell. 2005 Jul 22;19(2):259-69. doi: 10.1016/j.molcel.2005.06.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验