Suppr超能文献

噬菌体λ感染过程中细胞命运选择的确定。

Determination of cell fate selection during phage lambda infection.

作者信息

St-Pierre François, Endy Drew

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20705-10. doi: 10.1073/pnas.0808831105. Epub 2008 Dec 19.

Abstract

Bacteriophage lambda infection of Escherichia coli can result in distinct cell fate outcomes. For example, some cells lyse whereas others survive as lysogens. A quantitative biophysical model of lambda infection supports the hypothesis that spontaneous differences in the timing of individual molecular events during lambda infection leads to variation in the selection of cell fates. Building from this analysis, the lambda lysis-lysogeny decision now serves as a paradigm for how intrinsic molecular noise can influence cellular behavior, drive developmental processes, and produce population heterogeneity. Here, we report experimental evidence that warrants reconsidering this framework. By using cell fractioning, plating, and single-cell fluorescent microscopy, we find that physical differences among cells present before infection bias lambda developmental outcomes. Specifically, variation in cell volume at the time of infection can be used to help predict cell fate: a approximately 2-fold increase in cell volume results in a 4- to 5-fold decrease in the probability of lysogeny. Other cell fate decisions now thought to be stochastic might also be determined by pre-existing variation.

摘要

大肠杆菌受到噬菌体λ感染可导致不同的细胞命运结果。例如,一些细胞裂解,而另一些细胞则作为溶原菌存活下来。λ感染的定量生物物理模型支持这样一种假说,即λ感染期间单个分子事件发生时间的自发差异会导致细胞命运选择的变化。基于这一分析,λ裂解-溶原决定现在成为了一个范例,展示了内在分子噪声如何影响细胞行为、驱动发育过程并产生群体异质性。在此,我们报告了一些实验证据,这些证据表明有必要重新审视这一框架。通过使用细胞分级分离、平板接种和单细胞荧光显微镜技术,我们发现感染前细胞之间的物理差异会影响λ的发育结果。具体而言,感染时细胞体积的变化可用于帮助预测细胞命运:细胞体积增加约2倍会导致溶原化概率降低4至5倍。现在被认为是随机的其他细胞命运决定也可能由预先存在的差异所决定。

相似文献

1
Determination of cell fate selection during phage lambda infection.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20705-10. doi: 10.1073/pnas.0808831105. Epub 2008 Dec 19.
2
To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages.
PLoS Comput Biol. 2011 Mar;7(3):e1002006. doi: 10.1371/journal.pcbi.1002006. Epub 2011 Mar 10.
3
Decision making at a subcellular level determines the outcome of bacteriophage infection.
Cell. 2010 May 14;141(4):682-91. doi: 10.1016/j.cell.2010.03.034.
4
Bacteriophage lambda: a paradigm revisited.
J Virol. 2010 Jul;84(13):6876-9. doi: 10.1128/JVI.02177-09. Epub 2010 Apr 7.
5
Stochastic cellular fate decision making by multiple infecting lambda phage.
PLoS One. 2014 Aug 8;9(8):e103636. doi: 10.1371/journal.pone.0103636. eCollection 2014.
6
Late-Arriving Signals Contribute Less to Cell-Fate Decisions.
Biophys J. 2017 Nov 7;113(9):2110-2120. doi: 10.1016/j.bpj.2017.09.012.
7
High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda.
J Biol Chem. 2019 Mar 8;294(10):3343-3349. doi: 10.1074/jbc.TM118.003209. Epub 2018 Sep 21.
9
Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.
10
Following cell-fate in E. coli after infection by phage lambda.
J Vis Exp. 2011 Oct 14(56):e3363. doi: 10.3791/3363.

引用本文的文献

1
Spatial propagation of temperate phages within and among biofilms.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417058122. doi: 10.1073/pnas.2417058122. Epub 2025 Feb 4.
3
Linking molecular mechanisms to their evolutionary consequences: a primer.
Genetics. 2025 Feb 5;229(2). doi: 10.1093/genetics/iyae191.
4
Evolution of virulence in emerging epidemics: from theory to experimental evolution and back.
Virus Evol. 2024 Oct 15;10(1):veae069. doi: 10.1093/ve/veae069. eCollection 2024.
5
Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection.
J Virol. 2024 Nov 19;98(11):e0112824. doi: 10.1128/jvi.01128-24. Epub 2024 Oct 31.
6
Using bacterial population dynamics to count phages and their lysogens.
Nat Commun. 2024 Sep 6;15(1):7814. doi: 10.1038/s41467-024-51913-6.
7
Coinfecting phages impede each other's entry into the cell.
Curr Biol. 2024 Jul 8;34(13):2841-2853.e18. doi: 10.1016/j.cub.2024.05.032. Epub 2024 Jun 14.
8
Bacterial resistance to temperate phage is influenced by the frequency of lysogenic establishment.
iScience. 2024 Mar 27;27(4):109595. doi: 10.1016/j.isci.2024.109595. eCollection 2024 Apr 19.
9
Anaerobiosis, a neglected factor in phage-bacteria interactions.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0149123. doi: 10.1128/aem.01491-23. Epub 2023 Nov 15.
10
Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone.
iScience. 2023 Sep 9;26(10):107885. doi: 10.1016/j.isci.2023.107885. eCollection 2023 Oct 20.

本文引用的文献

1
The burst size distribution in the growth of bacterial viruses (bacteriophages).
J Bacteriol. 1945 Aug;50:131-5. doi: 10.1128/JB.50.2.131-135.1945.
2
Recombineering: genetic engineering in bacteria using homologous recombination.
Curr Protoc Mol Biol. 2007 Apr;Chapter 1:Unit 1.16. doi: 10.1002/0471142727.mb0116s78.
3
A bacterial kind of aging.
PLoS Genet. 2007 Dec;3(12):e224. doi: 10.1371/journal.pgen.0030224.
4
Noise in gene expression determines cell fate in Bacillus subtilis.
Science. 2007 Jul 27;317(5837):526-9. doi: 10.1126/science.1140818. Epub 2007 Jun 14.
5
Living with noisy genes: how cells function reliably with inherent variability in gene expression.
Annu Rev Biophys Biomol Struct. 2007;36:413-34. doi: 10.1146/annurev.biophys.36.040306.132705.
6
Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision.
PLoS One. 2007 Apr 11;2(4):e363. doi: 10.1371/journal.pone.0000363.
7
Tunability and noise dependence in differentiation dynamics.
Science. 2007 Mar 23;315(5819):1716-9. doi: 10.1126/science.1137455.
8
Variability and memory of protein levels in human cells.
Nature. 2006 Nov 30;444(7119):643-6. doi: 10.1038/nature05316. Epub 2006 Nov 19.
9
An excitable gene regulatory circuit induces transient cellular differentiation.
Nature. 2006 Mar 23;440(7083):545-50. doi: 10.1038/nature04588.
10
Filtering transcriptional noise during development: concepts and mechanisms.
Nat Rev Genet. 2006 Jan;7(1):34-44. doi: 10.1038/nrg1750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验