Suppr超能文献

通过神经网络将化学参数与感官评定结果相联系以区分橄榄油质量。

Linking chemical parameters to sensory panel results through neural networks to distinguish olive oil quality.

作者信息

Cancilla John C, Wang Selina C, Díaz-Rodríguez Pablo, Matute Gemma, Cancilla John D, Flynn Dan, Torrecilla José S

机构信息

Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain.

出版信息

J Agric Food Chem. 2014 Nov 5;62(44):10661-5. doi: 10.1021/jf503482h. Epub 2014 Oct 27.

Abstract

A wide variety of olive oil samples from different origins and olive types has been chemically analyzed as well as evaluated by trained sensory panelists. Six chemical parameters have been obtained for each sample (free fatty acids, peroxide value, two UV absorption parameters (K232 and K268), 1,2-diacylglycerol content, and pyropheophytins) and linked to their quality using an artificial neural network-based model. Herein, the nonlinear algorithms were used to distinguish olive oil quality. Two different methods were defined to assess the statistical performance of the model (a K-fold cross-validation (K = 6) and three different blind tests), and both of them showed around a 95-96% correct classification rate. These results support that a relationship between the chemical and the sensory analyses exists and that the mathematical tool can potentially be implemented into a device that could be employed for various useful applications.

摘要

对来自不同产地和橄榄品种的多种橄榄油样品进行了化学分析,并由训练有素的感官评价员进行了评估。每个样品获得了六个化学参数(游离脂肪酸、过氧化值、两个紫外吸收参数(K232和K268)、1,2 - 二酰基甘油含量和焦脱镁叶绿素),并使用基于人工神经网络的模型将其与质量相关联。本文中,使用非线性算法来区分橄榄油质量。定义了两种不同的方法来评估模型的统计性能(六折交叉验证(K = 6)和三种不同的盲测),两者都显示出约95 - 96%的正确分类率。这些结果支持化学分析和感官分析之间存在关联,并且该数学工具有可能被应用于可用于各种有用应用的设备中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验