Molina Julien, Laroche Aurélie, Richard Jean-Victor, Schuller Anne-Sophie, Rolando Christian
Mäder Research, Mulhouse, France.
Faculté des Sciences et Technologies, Université de Lille, USR 3290 MSAP, Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, Villeneuve d'Ascq, France.
Front Chem. 2019 May 27;7:375. doi: 10.3389/fchem.2019.00375. eCollection 2019.
Unsaturated polyester resins are widely used for the preparation of composite materials and fulfill the majority of practical requirements for industrial and domestic applications at low cost. These resins consist of a highly viscous polyester oligomer and a reactive diluent, which allows its process ability and its crosslinking. The viscosity of the initial polyester and the reactive diluent mixture is critical for practical applications. So far, these viscosities were determined by trial and error which implies a time-consuming succession of manipulations, to achieve the targeted viscosities. In this work, we developed a strategy for predicting the viscosities of unsaturated polyesters formulation based on neural networks. In a first step 15 unsaturated polyesters have been synthesized through high-temperature polycondensation using usual monomers. Experimental Hansen solubility parameters (HSP) were determined from solubility experiment with HSPiP software and glass transition temperatures ( ) were measured by Differential Scanning Calorimetry (DSC). Quantitative Structure-Property Relationship (QSPR) coupled to multiple linear regressions have been used to get a prediction of Hansen solubility parameters δ, δ , and δ from structural composition. A second QSPR regression has been done on glass transition temperature (prediction vs. experimental coefficient of determination = 0.93) of these unsaturated polyesters. These unsaturated polyesters were next diluted in several solvents with different natures (ethers, esters, alcohol, aromatics for example) at different concentrations. Viscosities at room temperature of these polyesters in solution were finally measured in order to create a database of 220 entries with 7 descriptors (polyester molecular weight, , dispersity index Ð, polyester-solvent HSP RED, molar volume of the solvent, δ of the solvent, concentration of polyester in solvent). The QSPR method for predicting the viscosity from these 6 descriptors proved to be ineffective ( = 0.56) as viscosities exhibit non-linear phenomena. A Neural Network with an optimized number of 12 hidden neurons has been trained with 179 entries to predict the viscosity. A correlation between experimental and predicted viscosities based on 41 testing instances gave a correlation coefficient of 0.88 and a predicted vs. measured slope of 0.98. Thanks to Neural Networks, new developments with eco-friendly reactive diluents can be accelerated.
不饱和聚酯树脂广泛用于制备复合材料,并以低成本满足工业和家庭应用的大多数实际需求。这些树脂由高粘性聚酯低聚物和反应性稀释剂组成,这使其具有加工性能和交联能力。初始聚酯和反应性稀释剂混合物的粘度对于实际应用至关重要。到目前为止,这些粘度是通过反复试验确定的,这意味着要进行一系列耗时的操作才能达到目标粘度。在这项工作中,我们开发了一种基于神经网络预测不饱和聚酯配方粘度的策略。第一步,使用常用单体通过高温缩聚合成了15种不饱和聚酯。通过使用HSPiP软件的溶解度实验确定了实验汉森溶解度参数(HSP),并通过差示扫描量热法(DSC)测量了玻璃化转变温度( )。定量结构-性质关系(QSPR)与多元线性回归相结合,用于从结构组成预测汉森溶解度参数δ、δ 和δ 。对这些不饱和聚酯的玻璃化转变温度进行了第二次QSPR回归(预测与实验决定系数 = 0.93)。接下来,将这些不饱和聚酯在几种不同性质的溶剂(例如醚、酯、醇、芳烃)中以不同浓度稀释。最后测量了这些聚酯溶液在室温下的粘度,以创建一个包含220个条目的数据库,其中有7个描述符(聚酯分子量、 、分散指数Ð、聚酯-溶剂HSP RED、溶剂的摩尔体积、溶剂的δ 、聚酯在溶剂中的浓度)。事实证明,用这6个描述符预测粘度的QSPR方法无效( = 0.56),因为粘度表现出非线性现象。一个具有12个隐藏神经元的优化数量的神经网络用179个条目进行训练以预测粘度。基于41个测试实例的实验粘度与预测粘度之间的相关性给出了相关系数 为0.88,预测与测量斜率为0.98。借助神经网络,可以加速使用环保型反应性稀释剂的新开发。