Di Rienzo Franck, Guillot Aymeric, Mateo Sébastien, Daligault Sébastien, Delpuech Claude, Rode Gilles, Collet Christian
Centre de Recherche et d'Innovation sur le Sport (EA 647), Université de Lyon, Université Claude Bernard Lyon 1, 27-29 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France,
Exp Brain Res. 2015 Jan;233(1):291-302. doi: 10.1007/s00221-014-4114-7. Epub 2014 Oct 10.
Motor imagery (MI - i.e., the mental representation of an action without physically executing it) stimulates brain motor networks and promotes motor learning after spinal cord injury (SCI). An interesting issue is whether the brain networks controlling MI are being reorganized with reference to spared motor functions. In this pilot study, we tested using magnetoencephalography (MEG) whether changes in cortical recruitment during MI were related to the motor changes elicited by rehabilitation. Over a 1-year period of inclusion, C6 SCI participants (n = 4) met stringent criteria for inclusion in a rehabilitation program focused on the tenodesis prehension (i.e., a compensatory prehension enabling seizing of objects in spite of hand and forearm muscles paralysis). After an extended baseline period of 5 weeks including repeated MEG and chronometric assessments of motor performance, MI training was embedded to the classical course of physiotherapy for five additional weeks. Posttest MEG and motor performance data were collected. A group of matched healthy control participants underwent a similar procedure. The MI intervention resulted in changes in the variability of the wrist extensions, i.e., a key movement of the tenodesis grasp (p < .05). Interestingly, the extent of cortical recruitment, quantified by the number of MEG activation sources recorded within Brodmann areas 1-8 during MI of the wrist extension, significantly predicted actual movement variability changes across sessions (p < .001). However, no such relationship was present for movement times. Repeated measurements afforded a reliable statistical power (range .70-.97). This pilot study does not provide straightforward evidence of MI efficacy, which would require a randomized controlled trial. Nonetheless, the data showed that the relationship between action and imagery of spared actions may be preserved after SCI.
运动想象(MI,即不实际执行动作的动作心理表征)可刺激脑运动网络,并促进脊髓损伤(SCI)后的运动学习。一个有趣的问题是,控制运动想象的脑网络是否会参照残留的运动功能进行重组。在这项初步研究中,我们使用脑磁图(MEG)测试了运动想象期间皮质募集的变化是否与康复引起的运动变化有关。在为期1年的纳入期内,C6脊髓损伤参与者(n = 4)符合纳入一项专注于肌腱固定抓握(即一种代偿性抓握,尽管手部和前臂肌肉麻痹仍能抓取物体)康复计划的严格标准。在包括重复脑磁图和运动表现计时评估在内的长达5周的延长基线期后,运动想象训练被纳入经典物理治疗课程中,又持续了5周。收集了测试后的脑磁图和运动表现数据。一组匹配的健康对照参与者也接受了类似的程序。运动想象干预导致腕部伸展变异性发生变化,腕部伸展是肌腱固定抓握的关键动作(p < 0.05)。有趣的是,通过在腕部伸展运动想象期间布罗德曼区域1 - 8内记录的脑磁图激活源数量量化的皮质募集程度,显著预测了各阶段实际运动变异性的变化(p < 0.001)。然而,运动时间方面不存在这种关系。重复测量提供了可靠的统计效力(范围为0.70 - 0.97)。这项初步研究没有提供运动想象疗效的直接证据,这需要进行随机对照试验。尽管如此,数据表明脊髓损伤后残留动作的动作与想象之间的关系可能得以保留。