Duarte-Galvan Carlos, Romero-Troncoso Rene de J, Torres-Pacheco Irineo, Guevara-Gonzalez Ramon G, Fernandez-Jaramillo Arturo A, Contreras-Medina Luis M, Carrillo-Serrano Roberto V, Millan-Almaraz Jesus R
CA Ingeniería de Biosistemas, División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Qro., Mexico.
HSPdigital-CA Telemática, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle km 3.5+1.8, Palo Blanco, Salamanca 36885, Gto, Mexico.
Sensors (Basel). 2014 Oct 9;14(10):18650-69. doi: 10.3390/s141018650.
Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.
土壤干旱是对植物最危险的胁迫之一。它会影响作物的产量和质量,如果长时间未被察觉,整个作物可能会损失。然而,对于一些植物来说,一定程度的干旱胁迫会改善特定特性。在这种情况下,需要一种能够检测和量化干旱胁迫对植物影响的设备。本文重点测试通过气体交换方法监测生理过程是否能提供足够信息来检测植物的干旱胁迫状况。该实验包括使用一组基于现场可编程门阵列(FPGA)的智能传感器,在可控干旱条件下监测一组植物。主要目标是使用不同的数字信号处理技术,如离散小波变换(DWT),来探究植物生理过程对干旱的响应。此外,还采用了基于指标的方法来补偿温室内的空间变化。结果表明各处理之间的差异与温室内的气候变化无关。最后,在将DWT用作数字滤波器后,结果表明所提出的系统能够抑制高频噪声并检测干旱状况。