Ossipov A
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Phys Rev Lett. 2014 Sep 26;113(13):130402. doi: 10.1103/PhysRevLett.113.130402. Epub 2014 Sep 24.
We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.
我们研究了由有限范围为(a)的势散射的非相互作用费米子无限系统中大小为(L)的有限子系统的基态纠缠熵。我们推导了散射矩阵和重叠矩阵之间的一般关系,并用它证明对于一维对称势,只要(L/a\gg1),冯·诺依曼熵、雷尼熵和全计数统计对势散射具有鲁棒性。数值计算结果支持了该结论对于一般势的有效性。