Suppr超能文献

Quantitative Phase Microscopy: how to make phase data meaningful.

作者信息

Goldstein Goldie, Creath Katherine

机构信息

4D Technology Corporation, Tucson AZ 85706.

4D Technology Corporation, Tucson AZ 85706 ; College of Optical Sciences, The University of Arizona, Tucson, AZ USA 85721 ; Optineering, Tucson, AZ USA 85719.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Mar 12;8949:89491C. doi: 10.1117/12.2042103.

Abstract

The continued development of hardware and associated image processing techniques for quantitative phase microscopy has allowed superior phase data to be acquired that readily shows dynamic optical volume changes and enables particle tracking. Recent efforts have focused on tying phase data and associated metrics to cell morphology. One challenge in measuring biological objects using interferometrically obtained phase information is achieving consistent phase unwrapping and -dimensions and correct for temporal discrepanices using a temporal unwrapping procedure. The residual background shape due to mean value fluctuations and residual tilts can be removed automatically using a simple object characterization algorithm. Once the phase data are processed consistently, it is then possible to characterize biological samples such as myocytes and myoblasts in terms of their size, texture and optical volume and track those features dynamically. By observing optical volume dynamically it is possible to determine the presence of objects such as vesicles within myoblasts even when they are co-located with other objects. Quantitative phase microscopy provides a label-free mechanism to characterize living cells and their morphology in dynamic environments, however it is critical to connect the measured phase to important biological function for this measurement modality to prove useful to a broader scientific community. In order to do so, results must be highly consistent and require little to no user manipulation to achieve high quality nynerical results that can be combined with other imaging modalities.

摘要

相似文献

1
Quantitative Phase Microscopy: how to make phase data meaningful.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;8949:89491C. doi: 10.1117/12.2042103.
2
Dynamic 4-dimensional microscope system with automated background leveling.
Proc SPIE Int Soc Opt Eng. 2012 Sep 13;8493:84930N. doi: 10.1117/12.929338.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Dynamic quantitative phase imaging for biological objects using a pixelated phase mask.
Biomed Opt Express. 2012 Nov 1;3(11):2866-80. doi: 10.1364/BOE.3.002866. Epub 2012 Oct 17.
6
A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
J Microsc. 2020 Aug;279(2):114-122. doi: 10.1111/jmi.12924. Epub 2020 Jun 5.
7
Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures.
Proc SPIE Int Soc Opt Eng. 2010 Aug 2;7782:77820B-. doi: 10.1117/12.864275.
8
Dynamic phase imaging utilizing a 4-dimensional microscope system.
Proc SPIE Int Soc Opt Eng. 2011 Feb 21;7904:79040O-. doi: 10.1117/12.875928.
9
Quantitative phase amplitude microscopy IV: imaging thick specimens.
J Microsc. 2004 Apr;214(Pt 1):62-9. doi: 10.1111/j.0022-2720.2004.01302.x.

本文引用的文献

1
Dynamic 4-dimensional microscope system with automated background leveling.
Proc SPIE Int Soc Opt Eng. 2012 Sep 13;8493:84930N. doi: 10.1117/12.929338.
2
Dynamic quantitative phase imaging for biological objects using a pixelated phase mask.
Biomed Opt Express. 2012 Nov 1;3(11):2866-80. doi: 10.1364/BOE.3.002866. Epub 2012 Oct 17.
3
Temporal phase-unwrapping algorithm for automated interferogram analysis.
Appl Opt. 1993 Jun 10;32(17):3047-52. doi: 10.1364/AO.32.003047.
4
Absolute measurement of surface roughness.
Appl Opt. 1990 Sep 10;29(26):3823-7. doi: 10.1364/AO.29.003823.
5
Using buoyant mass to measure the growth of single cells.
Nat Methods. 2010 May;7(5):387-90. doi: 10.1038/nmeth.1452. Epub 2010 Apr 11.
6
Optical heterodyne profilometry.
Appl Opt. 1981 Feb 15;20(4):610-8. doi: 10.1364/AO.20.000610.
7
Shortest path refinement for motion estimation from tagged MR images.
IEEE Trans Med Imaging. 2010 Aug;29(8):1560-72. doi: 10.1109/TMI.2010.2045509. Epub 2010 Mar 18.
8
Measurement of mass, density, and volume during the cell cycle of yeast.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):999-1004. doi: 10.1073/pnas.0901851107. Epub 2009 Dec 23.
9
Optical imaging of cell mass and growth dynamics.
Am J Physiol Cell Physiol. 2008 Aug;295(2):C538-44. doi: 10.1152/ajpcell.00121.2008. Epub 2008 Jun 18.
10
Shearing interferometer for phase shifting interferometry with polarization phase shifter.
Appl Opt. 1985 Dec 15;24(24):4439. doi: 10.1364/ao.24.004439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验