Suppr超能文献

利用微泡定位超声能量来破坏藻类细胞。

Algal cell disruption using microbubbles to localize ultrasonic energy.

作者信息

Krehbiel Joel D, Schideman Lance C, King Daniel A, Freund Jonathan B

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, United States.

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, United States.

出版信息

Bioresour Technol. 2014 Dec;173:448-451. doi: 10.1016/j.biortech.2014.09.072. Epub 2014 Sep 22.

Abstract

Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 10(8)microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation.

摘要

为了提高细胞破碎效率以及藻类生物燃料生产的净能量平衡,向藻类溶液中添加了微泡。实验结果表明,在所研究的1.90至3.07MPa范围内,随着峰值稀疏超声压力的增加,破碎率也随之增加。此外,添加微泡后超声细胞破碎率提高了58%,在微泡浓度为10(8)个/毫升的范围内出现峰值破碎率。微泡在空间和时间上对能量的定位提高了效率:该过程所需的能量估计仅为藻类生物质燃烧可用热量的四分之一,以及当前使用的细胞破碎方法所需能量的五分之一。这种能量效率的提高使得微泡增强超声在生物能源应用中具有可行性,并且有望与基于溶解空气浮选的当前细胞收获方法良好整合。

相似文献

1
Algal cell disruption using microbubbles to localize ultrasonic energy.
Bioresour Technol. 2014 Dec;173:448-451. doi: 10.1016/j.biortech.2014.09.072. Epub 2014 Sep 22.
2
Application of microbubble air flotation to harvest Microcystis sp. from agriculture wastewater: The regulation and mechanisms.
Biotechnol Bioeng. 2024 Dec;121(12):3742-3753. doi: 10.1002/bit.28836. Epub 2024 Sep 9.
3
Efficiency and mechanism of ozonated microbubbles for enhancing the removal of algae and algae-derived organic matter.
Chemosphere. 2023 Jan;312(Pt 1):137220. doi: 10.1016/j.chemosphere.2022.137220. Epub 2022 Nov 10.
4
Aggregate formation affects ultrasonic disruption of microalgal cells.
Bioresour Technol. 2015 Dec;198:907-12. doi: 10.1016/j.biortech.2015.09.099. Epub 2015 Oct 9.
5
Ultrasonic cavitation for disruption of microalgae.
Bioresour Technol. 2015 May;184:276-279. doi: 10.1016/j.biortech.2014.11.036. Epub 2014 Nov 15.
6
Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles.
PLoS One. 2012;7(8):e42754. doi: 10.1371/journal.pone.0042754. Epub 2012 Aug 13.
7
Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index.
Ultrasound Med Biol. 2008 May;34(5):834-40. doi: 10.1016/j.ultrasmedbio.2007.10.016. Epub 2008 Jan 22.
8
9
Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation.
Ultrason Sonochem. 2011 Sep;18(5):1193-6. doi: 10.1016/j.ultsonch.2010.11.005. Epub 2010 Nov 16.
10
The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice.
Ultrasound Med Biol. 2017 Feb;43(2):469-475. doi: 10.1016/j.ultrasmedbio.2016.09.019. Epub 2016 Oct 24.

引用本文的文献

1
Ultrasound for microalgal cell disruption and product extraction: A review.
Ultrason Sonochem. 2022 Jun;87:106054. doi: 10.1016/j.ultsonch.2022.106054. Epub 2022 Jun 1.
2

本文引用的文献

1
Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation.
Bioresour Technol. 2013 Jan;128:199-206. doi: 10.1016/j.biortech.2012.10.032. Epub 2012 Oct 22.
2
Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803.
Environ Sci Technol. 2011 Apr 15;45(8):3795-802. doi: 10.1021/es103339x. Epub 2011 Mar 23.
4
Comparison of several methods for effective lipid extraction from microalgae.
Bioresour Technol. 2010 Jan;101 Suppl 1:S75-7. doi: 10.1016/j.biortech.2009.03.058. Epub 2009 Apr 21.
5
High-frequency dynamics of ultrasound contrast agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1981-91. doi: 10.1109/tuffc.2005.1561667.
6
Microbubble ultrasound contrast agents: a review.
Proc Inst Mech Eng H. 2003;217(6):429-47. doi: 10.1243/09544110360729072.
7
Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.
Appl Environ Microbiol. 1997 Jun;63(6):2421-31. doi: 10.1128/aem.63.6.2421-2431.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验