Suppr超能文献

氧气对小鼠超声诱导的血脑屏障破坏的影响。

The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice.

作者信息

McDannold Nathan, Zhang Yongzhi, Vykhodtseva Natalia

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Ultrasound Med Biol. 2017 Feb;43(2):469-475. doi: 10.1016/j.ultrasmedbio.2016.09.019. Epub 2016 Oct 24.

Abstract

Numerous researchers are investigating the use of microbubble-enhanced ultrasound to disrupt the blood-brain barrier (BBB) and deliver drugs to the brain. This study investigated the impact of using oxygen as a carrier gas for anesthesia on microbubble activity and BBB disruption. Targets in mice were sonicated in combination with administration of Optison microbubbles (100 μL/kg) under isoflurane anesthesia with either oxygen or medical air. A 690-kHz focused ultrasound transducer applied 10-ms bursts at peak pressure amplitudes of 0.46-0.54 MPa (n = 2) or 0.34-0.36 MPa (n = 5). After sonication of two locations in one hemisphere, the carrier gas for the anesthesia was changed and the sonications were repeated in the contralateral hemisphere. The BBB disruption, measured via contrast-enhanced magnetic resonance imaging, was significantly greater (p < 0.001) with medical air than with oxygen. Harmonic emissions were also greater with air (p < 0.001), while the decay rate of the harmonic emissions was 1.5 times faster with oxygen. A good correlation (R, 0.46) was observed between the harmonic emissions strength and magnetic resonance imaging signal enhancement. At 0.46-0.54 MPa, both the occurrence and strength of wideband emissions were greater with medical air. However, at lower peak pressure amplitudes of 0.34-0.36 MPa, the strength and probability for wideband emissions were higher with oxygen. Little or no effects were observed in histology at 0.34-0.36 MPa. These findings show that use of oxygen as a carrier gas can result in a substantial diminution of BBB disruption. These results should be taken into account when comparing studies from different researchers and in translating this method to humans.

摘要

众多研究人员正在研究使用微泡增强超声来破坏血脑屏障(BBB)并将药物输送到大脑。本研究调查了使用氧气作为麻醉载气对微泡活性和血脑屏障破坏的影响。在异氟烷麻醉下,使用氧气或医用空气,将小鼠的目标与Optison微泡(100 μL/kg)联合给药进行超声处理。一个690 kHz的聚焦超声换能器在0.46 - 0.54 MPa的峰值压力幅度下施加10 ms的脉冲(n = 2)或0.34 - 0.36 MPa(n = 5)。在一个半球的两个位置进行超声处理后,改变麻醉的载气,并在对侧半球重复超声处理。通过对比增强磁共振成像测量,医用空气组的血脑屏障破坏明显大于氧气组(p < 0.001)。空气组的谐波发射也更强(p < 0.001),而氧气组的谐波发射衰减率快1.5倍。观察到谐波发射强度与磁共振成像信号增强之间有良好的相关性(R,0.46)。在0.46 - 0.54 MPa时,医用空气组宽带发射的发生率和强度都更高。然而,在较低的峰值压力幅度0.34 - 0.36 MPa时,氧气组宽带发射的强度和概率更高。在0.34 - 0.36 MPa时,组织学观察几乎没有或没有观察到影响。这些发现表明,使用氧气作为载气会导致血脑屏障破坏显著减少。在比较不同研究人员的研究以及将该方法转化应用于人体时,应考虑这些结果。

相似文献

1
The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice.
Ultrasound Med Biol. 2017 Feb;43(2):469-475. doi: 10.1016/j.ultrasmedbio.2016.09.019. Epub 2016 Oct 24.
3
MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits.
Ultrasound Med Biol. 2005 Nov;31(11):1527-37. doi: 10.1016/j.ultrasmedbio.2005.07.010.
4
Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study.
Ultrasound Med Biol. 2007 Apr;33(4):584-90. doi: 10.1016/j.ultrasmedbio.2006.10.004.
5
The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound.
J Control Release. 2012 Aug 20;162(1):134-42. doi: 10.1016/j.jconrel.2012.06.012. Epub 2012 Jun 15.
7
Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption.
Ultrasound Med Biol. 2008 Jun;34(6):930-7. doi: 10.1016/j.ultrasmedbio.2007.11.009. Epub 2008 Feb 21.
8
Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.
PLoS One. 2012;7(9):e45783. doi: 10.1371/journal.pone.0045783. Epub 2012 Sep 24.
10
Delivery of Liposomes with Different Sizes to Mice Brain after Sonication by Focused Ultrasound in the Presence of Microbubbles.
Ultrasound Med Biol. 2016 Jul;42(7):1499-511. doi: 10.1016/j.ultrasmedbio.2016.01.019. Epub 2016 Apr 26.

引用本文的文献

2
Ultrasound-responsive nanoparticles for imaging and therapy of brain tumors.
Mater Today Bio. 2025 Mar 17;32:101661. doi: 10.1016/j.mtbio.2025.101661. eCollection 2025 Jun.
5
Controlled oxygen delivery to power tissue regeneration.
Nat Commun. 2024 May 22;15(1):4361. doi: 10.1038/s41467-024-48719-x.
7
9
An Affordable and Easy-to-Use Focused Ultrasound Device for Noninvasive and High Precision Drug Delivery to the Mouse Brain.
IEEE Trans Biomed Eng. 2022 Sep;69(9):2723-2732. doi: 10.1109/TBME.2022.3150781. Epub 2022 Aug 19.

本文引用的文献

1
Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.
Phys Med Biol. 2015 Dec 7;60(23):9079-94. doi: 10.1088/0031-9155/60/23/9079. Epub 2015 Nov 12.
2
Focused ultrasound-mediated drug delivery through the blood-brain barrier.
Expert Rev Neurother. 2015 May;15(5):477-91. doi: 10.1586/14737175.2015.1028369.
3
Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.
PLoS One. 2012;7(9):e45783. doi: 10.1371/journal.pone.0045783. Epub 2012 Sep 24.
5
The effect of inhaled gases on ultrasound contrast agent longevity in vivo.
Mol Imaging Biol. 2012 Feb;14(1):40-6. doi: 10.1007/s11307-011-0475-5.
6
Effect of anesthesia carrier gas on in vivo circulation times of ultrasound microbubble contrast agents in rats.
Contrast Media Mol Imaging. 2011 May-Jun;6(3):126-31. doi: 10.1002/cmmi.414. Epub 2011 Jan 19.
7
In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.
Phys Med Biol. 2010 Oct 21;55(20):6141-55. doi: 10.1088/0031-9155/55/20/007. Epub 2010 Sep 29.
8
The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model.
Phys Med Biol. 2010 Sep 21;55(18):5251-67. doi: 10.1088/0031-9155/55/18/001. Epub 2010 Aug 18.
9
Biopharmaceutical drug targeting to the brain.
J Drug Target. 2010 Apr;18(3):157-67. doi: 10.3109/10611860903548354.
10
The relationship of acoustic emission and pulse-repetition frequency in the detection of gas body stability and cell death.
Ultrasound Med Biol. 2006 Mar;32(3):439-47. doi: 10.1016/j.ultrasmedbio.2005.11.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验