Suppr超能文献

基于条件依赖和多重填补的癫痫多模态诊断

Multimodal diagnosis of epilepsy using conditional dependence and multiple imputation.

作者信息

Kerr Wesley T, Hwang Eric S, Raman Kaavya R, Barritt Sarah E, Patel Akash B, Le Justine M, Hori Jessica M, Davis Emily C, Braesch Chelsea T, Janio Emily A, Lau Edward P, Cho Andrew Y, Anderson Ariana, Silverman Daniel H S, Salamon Noriko, Engel Jerome, Stern John M, Cohen Mark S

机构信息

Dept. of Biomathematics, David Geffen School of Medicine at the University of California, Los Angeles, Semel Institute, 760 Westwood Plaza, Suite 17-369, Los Angeles, California 90095, Telephone: (310) 986-3307 ; Dept. of Psychiatry, Neuropsychiatric Institute, David Geffen School of Medicine at the University of California, Los Angeles, Semel Institute, 760 Westwood Plaza, Suite 17-369, Los Angeles, California 90095.

Dept. of Psychiatry, Neuropsychiatric Institute, David Geffen School of Medicine at the University of California, Los Angeles, Semel Institute, 760 Westwood Plaza, Suite 17-369, Los Angeles, California 90095.

出版信息

Int Workshop Pattern Recognit Neuroimaging. 2014 Jun:1-4. doi: 10.1109/PRNI.2014.6858526.

Abstract

The definitive diagnosis of the type of epilepsy, if it exists, in medication-resistant seizure disorder is based on the efficient combination of clinical information, long-term video-electroencephalography (EEG) and neuroimaging. Diagnoses are reached by a consensus panel that combines these diverse modalities using clinical wisdom and experience. Here we compare two methods of multimodal computer-aided diagnosis, vector concatenation (VC) and conditional dependence (CD), using clinical archive data from 645 patients with medication-resistant seizure disorder, confirmed by video-EEG. CD models the clinical decision process, whereas VC allows for statistical modeling of cross-modality interactions. Due to the nature of clinical data, not all information was available in all patients. To overcome this, we multiply-imputed the missing data. Using a C4.5 decision tree, single modality classifiers achieved 53.1%, 51.5% and 51.1% average accuracy for MRI, clinical information and FDG-PET, respectively, for the discrimination between non-epileptic seizures, temporal lobe epilepsy, other focal epilepsies and generalized-onset epilepsy (vs. chance, p<0.01). Using VC, the average accuracy was significantly lower (39.2%). In contrast, the CD classifier that classified with MRI then clinical information achieved an average accuracy of 58.7% (vs. VC, p<0.01). The decrease in accuracy of VC compared to the MRI classifier illustrates how the addition of more informative features does not improve performance monotonically. The superiority of conditional dependence over vector concatenation suggests that the structure imposed by conditional dependence improved our ability to model the underlying diagnostic trends in the multimodality data.

摘要

对于药物难治性癫痫发作障碍(若存在癫痫类型)的明确诊断,基于临床信息、长期视频脑电图(EEG)和神经影像学的有效结合。诊断由一个共识小组达成,该小组运用临床智慧和经验整合这些不同的模式。在此,我们使用来自645例经视频脑电图确诊的药物难治性癫痫发作障碍患者的临床存档数据,比较两种多模态计算机辅助诊断方法,即向量拼接(VC)和条件依赖(CD)。CD模拟临床决策过程,而VC允许对跨模态相互作用进行统计建模。由于临床数据的性质,并非所有信息在所有患者中都可用。为克服这一问题,我们对缺失数据进行了多重填补。使用C4.5决策树,单模态分类器在区分非癫痫性发作、颞叶癫痫、其他局灶性癫痫和全面性发作癫痫方面,对MRI、临床信息和FDG-PET分别达到了53.1%、51.5%和51.1%的平均准确率(与随机概率相比,p<0.01)。使用VC时,平均准确率显著更低(39.2%)。相比之下,先使用MRI然后使用临床信息进行分类的CD分类器平均准确率达到了58.7%(与VC相比,p<0.01)。与MRI分类器相比,VC准确率的下降说明了增加更多信息性特征并不会单调地提高性能。条件依赖相对于向量拼接的优越性表明,条件依赖所施加的结构提高了我们对多模态数据中潜在诊断趋势进行建模的能力。

相似文献

4

本文引用的文献

2
Quality indicators in an epilepsy monitoring unit.癫痫监测单元中的质量指标。
Epilepsy Behav. 2014 Apr;33:7-11. doi: 10.1016/j.yebeh.2014.01.021. Epub 2014 Feb 20.
4
Automated diagnosis of epilepsy using EEG power spectrum.基于脑电信号功率谱的癫痫自动诊断
Epilepsia. 2012 Nov;53(11):e189-92. doi: 10.1111/j.1528-1167.2012.03653.x. Epub 2012 Sep 11.
7
Automated MR image classification in temporal lobe epilepsy.自动磁共振图像分类在颞叶癫痫中的应用。
Neuroimage. 2012 Jan 2;59(1):356-62. doi: 10.1016/j.neuroimage.2011.07.068. Epub 2011 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验